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Abstract

This thesis is concerned with the study of Generalized Ornstein-Uhlenbeck
(GOU) processes and their application in ruin theory. The GOU processes,
which are the solutions of certain linear stochastic differential equations, have
been introduced in ruin theory by Paulsen in 1993 as models for the surplus
capital of insurance companies facing both insurance and market risks.

In general, these processes were chosen as suitable models on an a priori
basis. The first and main contribution of this thesis is to show that GOU
processes appear naturally as weak limits of random coefficient autoregres-
sive processes which are used extensively in various domains of applied prob-
ability. Using this result, the convergence in distribution of the ruin times,
the convergence of the ultimate ruin probability and the moments are also
shown.

The rest of the thesis deals with the study of certain properties of GOU pro-
cesses. In particular, the ruin problem for the GOU process is studied and
new bounds on the ruin probabilities are obtained. These results also general-
ize some known upper bounds, asymptotic results and conditions for certain
ruin to the case when the market risk is modelled by a semimartingale.

The final section of the thesis moves away from classical ruin theory and lays
some first directions for the study of the law of GOU processes at fixed times.
In particular, a partial integro-differential equation for the density, large and
small-time asymptotics are obtained for these laws. This shift away from
the ruin probability is explained by the fact that most risk measures used in
practice such as Value-at-Risk are based on these laws instead.





Resumé

Cette thèse contribue à l’étude des processus d’Ornstein-Uhlenbeck généralisés
(GOU) et de leurs applications en théorie de la ruine. Les processus GOU, qui
sont les solutions de certaines équations différentielles stochastiques linéaires,
ont été introduits en théorie de la ruine par Paulsen en 1993 en tant que
modèles pour le capital d’une assurance soumise au risque de marché.

En général, ces processus ont été choisis comme modèles de manière a priori.
La première et principale contribution de cette thèse est de montrer que
les processus GOU apparaissent de manière naturelle comme limites faibles
de processus autoregressifs à coefficients aléatoires, processus qui sont très
utilisés en probabilité appliquée. À partir de ce résultat, la convergence en
distribution des temps de ruine, la convergence des probabilités de ruine ainsi
que la convergence des moments sont aussi démontrées.

Le reste de la thèse traite de certaines propriétés des processus GOU. En
particulier, le problème de la ruine est traité et de nouvelles bornes sur
les probabilités de ruine sont obtenues. Ces résultats généralisent aussi des
résultats connus au cas où le risque de marché est modélisé par une semi-
martingale.

La dernière partie de la thèse s’éloigne de la théorie de la ruine pour passer
à l’étude de la loi du processus à temps fixe. En particulier, une équation
intégrodifférentielle partielle pour la densité est obtenue, ainsi que des ap-
proximations pour la loi en temps courts et longs. Cet éloignement s’explique
par le fait que la plupart des mesures de risque utilisées dans la pratique sont
basées sur ces lois et non sur la probabilité de ruine.
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les mêmes étapes que moi.

Puis, viennent les doctorants et doctorantes qui sont arrivés après moi.
Tout d’abord, je remercie Axel pour les parties de Dominion, les ”goudales”
partagées et les discussions passionnantes au labo et en dehors. Je remercie
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sœur Céline. Je les remercie simplement pour tout. Je remercie aussi le reste
de ma famille qui m’ont toujours soutenu.

Finalement, je remercie Laura pour son amour qui illumine chaque instant
de ma vie.



Contents

Introduction 13

1 Mathematical Definitions and Basic Facts 19
1.1 Preliminaries and Notations . . . . . . . . . . . . . . . . . . . 19
1.2 Semimartingales and Stochastic Calculus . . . . . . . . . . . . 21
1.3 Generalized Ornstein-Uhlenbeck (GOU) processes . . . . . . . 36

2 GOU Processes as Weak Limits 45
2.1 Related Results . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2 Weak Convergence of the Processes and of the Ruin Times . . 49
2.3 Approximation of the Ultimate Ruin Probability . . . . . . . . 62
2.4 Approximation of the Moments . . . . . . . . . . . . . . . . . 68

3 On the Ruin Problem for GOU Processes 75
3.1 Related Results . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2 Upper Bound for the Ruin Probabilities . . . . . . . . . . . . 79
3.3 Lower Bound and Logarithmic Asymptotic . . . . . . . . . . . 89
3.4 Moments of Exponential Functionals of Lévy Processes . . . . 95
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Introduction

Ruin theory is the part of actuarial science that studies the possibility of
insolvency associated with insurance practice. It is one of the oldest domains
of actuarial science and, in fact, its history traces back to the Enlightenment
and the development of probability theory, see e.g. [Pradier, 2003]. The
main questions which drive this research are: what is a good mathematical
model for the capital or surplus of an insurance company and, given some
good model, what is the probability of ruin or insolvency ?

We start by looking at the first of these questions. The part of ruin theory
that interests us specifically concerns the use of (continuous-time) stochas-
tic processes.1 While this restriction gives a direction, the collection of
continuous-time stochastic processes is still very large and further consid-
erations are needed to obtain a candidate model. A standard approach is to
consider the risks associated with insurance practice and to choose a model
which is both relatively realistic and tractable.

In the context of financial risks, multiple different causes exist which differ-
entiate the types of risks faced by insurance companies. The Basel Commit-
tee on Banking Supervision2, for example, distinguishes insurance or under-
writing risk due to the randomness in the times and sizes of payments to
the policy-holders, operational risk due to malfunction of business processes,
market risk due to random fluctuations of asset values, credit risk due to the
possibility of insolvency of a counterpart, etc... The question of the choice of

1See Section 1.1 for the definition of stochastic processes. In this thesis, we will focus
on continuous-time processes since, in addition to being in agreement with our experience
of time, the use of such processes allows the use of the powerful Itô or stochastic calculus
to study their properties.

2See e.g [Basel Committee on Banking Supervision, 2004] for a more precise definitions
of some of these risks.
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INTRODUCTION

a particular stochastic process is thus related to the question of what types
of risks to take into account.

In the seminal thesis [Lundberg, 1903], it is assumed that the only risk faced
by a company is due to underwriting insurance and the model of insurance
capital is given by the compound Poisson process with drift

Xt = y + pt−
Nt∑
i=1

Zi, t ≥ 0, (1)

where y > 0 represents the initial capital, p > 0 is a constant representing
the mean income received from payments by the policy-holders in some unit
of time, N = (Nt)t≥0 is a standard Poisson process representing the random
number and times of payments to the policy-holders in case of damage and
(Zi)i∈N∗ is a sequence of non-negative random variables representing the ran-
dom sizes of these payments. The study of this model, which is usually called
the Cramér-Lundberg model, and its generalizations has given rise to a vast
body of literature which is thoroughly reviewed in [Asmussen and Albrecher,
2010].

Increasingly, the recognition that insurance companies invest their capital in
financial assets has lead to the addition of market risk to the model. Then,
two stochastic processes X = (Xt)t≥0 and R = (Rt)t≥0 are considered and
the model is defined as the solution of the following stochastic differential
equation (see Section 1.2.2 for the definition of these equations)

Yt = y +Xt +

∫ t

0+

Ys−dRs, t ≥ 0, (2)

where y > 0 represents the initial capital, X represents the profit and loss
due to underwriting insurance and the integral represents the profit and loss
of investment at rate R up to time t.3 Up to our knowledge, the use of
such general models, in the context of ruin theory, was suggested for the first
time in [Paulsen, 1993]. The solution of Equation (2) is, under some condi-
tions (see Section 1.3), given by the generalized Ornstein-Uhlenbeck (GOU)

3The form of equation (2) suggests that at each time the entirety of the capital of the
company is invested in a financial asset, but this depends simply on the definition of R.
For example, if the company only invests a fraction α ∈ (0, 1) of its capital we could use
the process (αRt)t≥0 in (2) instead of R.

14



INTRODUCTION

process

Yt = E(R)t

(
y +

∫ t

0+

E(R)−1
s−dXs

)
, t ≥ 0, (3)

where E(.) is the stochastic or Doléans-Dade exponential (see Proposition
1.2.10 for the definition).

The main goal of this thesis is to motivate GOU processes as candidate
models, which thus incorporate both insurance and market risks, and to
contribute to the study of some of their properties. This is done in three
parts (Chapters 2, 3, and 4) whose contents we now describe.

In actuarial mathematics, the choice of Equation (2) or of the GOU process
(3) as a model was mostly based on an a priori choice. The main goal of
Chapter 2 is to show that it is indeed a model that appears naturally as a
limit of discrete-time processes which are used extensively in applied proba-
bility and in ruin theory, in particular. More precisely, consider the random
coefficient autoregressive process of order one which is denoted RCA(1) and
defined recursively by θ0 = 0 and

θk = ξk + θk−1ρk, k ∈ N∗,

where (ξk)k∈N∗ and (ρk)k∈N∗ are two sequences of random variables. We
prove that, under additional assumptions, a certain (continuous-time) re-

normalization θ(n) = (θ
(n)
t )t≥0, with n ∈ N∗, of this process converges in

distribution to a GOU process of the form (3) when the time-step goes to
0 and where X and R are stable Lévy processes (see Theorem 2.2.1 for the
result and the beginning of Section 2.2 for the details). In mathematics, such
convergence theorems are known as invariance principles.

To further describe the relevance of this result to ruin theory, we now in-
troduce the ruin time which is the stopping time (see Section 1.1 for the
definition of stopping times) that corresponds to the first time a stochas-
tic process goes below 0. More precisely, the ruin times of θ(n) are defined
as

τn(y) = inf{t > 0 : θ
(n)
t < 0}, n ∈ N∗,

and the ruin time of the GOU process as

τ(y) = inf{t > 0 : Yt < 0},

15



INTRODUCTION

where y > 0 represents the initial capital and with the convention that
inf{∅} = ∞. Equipped with these definitions, we continue in Chapter 2
by applying our previous invariance principle to prove the convergence in
distribution of the ruin times τn(y) to τ(y), as n → ∞ (Theorem 2.2.3).
Equivalently, this proves that, for all T > 0,

lim
n→∞

P(τn(y) ≤ T ) = P(τ(y) ≤ T ).

The (finite-time) ruin probability P(τ(y) ≤ T ), which represents the proba-
bility of ruin before some time T > 0, is fundamental to ruin theory. An other
quantity whose estimation is of importance is the ultimate or infinite-time
ruin probability P(τ(y) < ∞) which can be interpreted as the probability
that insolvency happens (without specifying a time-frame). In general, the
results for these quantities depend on y and thus give a theoretical control
on the possibility of ruin via the initial capital. We finish Chapter 2 by prov-
ing that the ultimate ruin probabilities (Theorem 2.3.1) and the moments
(Theorem 2.4.2) of θ(n) also converge to those of Y , in the case when ξ1 and
ln(ρ1) are square-integrable. In this simpler case, we also give the explicit
values of the limiting quantities and thus give a way to approximate them
for RCA(1) processes when the steps between updates and their magnitudes
are small.

Before describing the results of the following chapters, we turn back for a mo-
ment to the Cramér-Lundberg model (1). The most well known result about
this model is that the ultimate ruin probability decreases at least exponen-
tially fast when y increases, when the safety loading condition E(X1) > 0 is
satisfied, and is equal to 1, for all y > 0, when this condition is not satisfied.
This naturally leads to the question of how the ultimate ruin probability
behaves in the context of more general GOU models.

The surprising discovery in [Frolova et al., 2002], [Kalashnikov and Norberg,
2002] and [Paulsen, 2002] is that, in this case, the ultimate ruin probability
decreases as a power function when y increases and that the safety loading
condition is replaced by a condition on R which separates the states of the
world into a large volatility and small volatility state. These results thus show
that the decrease of the ultimate ruin probability is slower when market risk
is added to the model, which is in agreement with our intuition. However, the
shift from the safety loading condition to the volatility condition is surprising.
This means, paradoxically, that the possibility of ruin depends on the state of

16



INTRODUCTION

the market (and the investment strategy) and not on the way the insurance
business is handled ; if we are in a small volatility state, the ultimate ruin
probability will decrease to 0 as y increases, even if insurance policies are
sold at a loss and, conversely, ruin will be certain, for all y > 0, in a large
volatility state, even if the insurance business is managed perfectly. Since
these seminal papers appeared, the ruin problem for GOU processes has been
extensively studied (see 3.2 for a summary of the known results). Here, we
simply mention that these results are in general concerned with the case
where X and R are Lévy processes (see Definition 1.2.4 for the definition of
these processes).

In Chapter 3, we thus look at some extensions of these results. In view
of the previous discussion, we see that the focus for ruin theory, in this
context, should be on the returns process and the investment strategy of the
insurance company. In mathematical finance, the returns of an investment
strategy are modelled by a stochastic integral which is a semimartingale (see
Definition 1.2.1 for the definition of this object). Thus, the first contribution
of Chapter 3 is to extend some results which were known when R is Lévy
process to the more general case when R is a semimartingale (see Corollary
3.2.2 for the generalization of an upper bound on the ultimate ruin probability
and Theorem 3.5.1 for the generalization of a result on conditions for certain
ruin). This generalization also allows to consider more realistic markets which
change over time or switch between different states.

The second contribution of Chapter 3 lies in the focus on the finite-time
ruin probability. Indeed, most of the literature on this subject considers
the ultimate ruin probability instead. We believe that the finite-time ruin
probability is much more important than the ultimate ruin probability, since
it is more important to know if an insurance company will go bankrupt
before the age of retirement of some generation, rather than to know if it
will go bankrupt before the explosion of the sun. Thus, we obtain an upper
bound for the finite-time ruin probability (Theorem 3.2.1) and prove that
it is asymptotically optimal in some sense and in a large number of cases
(Theorem 3.3.1).

While the ruin probability is very important both from a theoretical and
practical point of view, most risk measures used in practice are based on
the law of Yt, for some fixed time t > 0. For example, value-at-risk and
other quantile based risk measures play a central role in the Basel regulatory

17



INTRODUCTION

framework, see e.g. [Basel Committee on Banking Supervision, 2019]. Thus
we give, in Chapter 4, some directions for the study of the law of Yt, for
fixed t > 0. In particular, we use the theory of Markov processes to obtain
a partial integro-differential equation for the density when it exists (Theo-
rem 4.2.3) and give sufficient conditions for its existence (Proposition 4.2.4).
Since this equation seems hard to solve analytically even in simple cases, we
then study approximations of the law of Yt when t is either small or large.
This leads, in particular, to the identification of a normal-log-normal mean-
variance mixture as a suitable small-time approximation (Section 4.3) and a
log-normal distribution (in the small volatility case) as a suitable large-time
approximation for the positive (and negative) parts of the law of Yt (Section
4.4).

18



Chapter 1

Mathematical Definitions and
Basic Facts

In this chapter, we introduce the notations, mathematical objects and basic
facts that will be used throughout the thesis. The material in Sections 1.1
and 1.2 is standard and we will, in general, follow [Jacod and Shiryaev, 2003]
for the presentation. The material in Section 1.3 is less standard and we will
give the details for completeness.

1.1 Preliminaries and Notations

We are given a complete probability space (Ω,F ,P) which we can equip with
a filtration F = (Ft)t≥0, so that (Ω,F ,F,P) forms a stochastic basis. Unless
stated otherwise, we will assume that the filtration F is complete (i.e. F0

contains all P-null sets of F) and right-continuous (i.e. Ft = ∩s>tFs, for all
t ≥ 0).

A stochastic process is a collection S = (St)t≥0 of mappings St : Ω → R.1

We can also consider stochastic processes as mappings of Ω×R+ into R via

1Since in this thesis we are interested in modelling a single insurance company and not
effects between them, we present the facts for stochastic processes valued in R rather than
Rd or some more general space.
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MATHEMATICAL DEFINITIONS AND BASIC FACTS

the map (ω, t) 7→ St(ω), for each (ω, t) ∈ Ω × R+. For a fixed ω ∈ Ω, the
mapping t 7→ St(ω) is called a path of S.

A stochastic process is measurable (respectively progressively measurable) if
the mapping (ω, t) 7→ Xt(ω) is F ⊗ B(R+)-measurable (respectively Ft ⊗
B([0, t])-measurable, for all t ≥ 0), where B(E) is the Borel σ-algebra asso-
ciated to some topological space E. We say that S is adapted to F, if, for
each t ≥ 0, the mapping ω 7→ St(ω) is Ft-measurable. The natural filtration
FS = (FS)t≥0 of S, given by FSt = σ(Ss, 0 ≤ s ≤ t), is the smallest filtration
to which S is adapted.2

We say that a stochastic processes is càdlàg if there exists a set Ω0 of prob-
ability one, such that the path t → St(ω) is right-continuous with left-hand
limits, for all ω ∈ Ω0. Similarly, we say that a stochastic process is con-
tinuous (respectively left-continuous) if the paths of the process are con-
tinuous (respectively left-continuous) on a set of probability one. Given
a càdlàg stochastic process S = (St)t≥0, we define the two following pro-
cesses S− = (St−)t≥0 as S0− = S0 and St− = lims↗t Ss and the jumps
∆S = (∆St)t≥0 as ∆St = St − St−.

The space of adapted càdlàg functions R+ → R is denoted D, the space
of adapted left-continuous functions with right-hand limits L and the space
of adapted continuous functions C. The notation Ck denotes the space of
k-times continuously differentiable functions and Ck,l the space of functions
with domain R+ × R+ which are k-times differentiable in the first variable
and l-times in the second. The notation Ck0 denotes the space of k-times
differentiable functions which vanish at infinity. When the domain is not R+

(or R+×R+) but some other space B, we write C(B) to designate the space
of continuous function with domain B with the same convention for the other
functional spaces.

A stopping time τ is a random variable τ : Ω→ [0,∞] such that {τ ≤ t} ∈ Ft,
for all t ≥ 0.3

2Note that this filtration is not necessarily complete and right continuous. When
we extend it to satisfy these assumptions, it is in general called the augmented natural
filtration. However, in this thesis we will always take the augmented natural filtration and
we call it simply the natural filtration.

3Note that we allow stopping times to take an infinite value. We will use the term
finite stopping time when the stopping time is almost surely finite.
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MATHEMATICAL DEFINITIONS AND BASIC FACTS

We will write
a.s.→ for the almost sure convergence,

P→ for the convergence

in probability,
d→ for the convergence in law and

d
= for the equality in law.

We write E(Z) for the expectation of some random variable Z and Var(Z)
for its variance. A generic normal random variable with expectation µ and
variance σ2 is denoted N (µ, σ2). The notation L(Z) designates the law of
the random variable Z and E(Z|G) denotes the conditional expectation of Z
with respect to some event, random variable or σ-algebra G. When F is some
set, we denote by 1F the indicator function of F . Finally, for any x, y ∈ R,
x∧ y means the minimum of x and y, x∨ y the maximum, (x)+ means x∨ 0,
and x 7→ [x] is the floor function.

Abbreviations : i.i.d. stands for ”independent and identically distributed”,
(P−a.s.) stands for almost surely for the probability measure P, w.r.t. stands
for ”with respect to” and r.h.s. and l.h.s. stand for ”right-hand side” and
”left-hand side”. The abbreviation ”SDE” stands for stochastic differential
equation as defined in Section 1.2.2. A PII is a ”process with independent
increments” (see Definition 1.2.4) and GOU process stands for ”generalized
Ornstein-Uhlenbeck process” (see Section 1.3).

1.2 Semimartingales and Stochastic Calculus

Intuitively, a semimartingale is composed of two parts: a finite variation pro-
cess and a local martingale. In this section, after defining these terms, we in-
troduce the notions of quadratic variation and characteristics of semimartin-
gales and present the fundamental example of the Lévy processes.

1.2.1 Martingales, Finite Variation Processes and Semi-
martingales

First, a martingale M = (Mt)t≥0 (respectively a submartingale, a super-
martingale) is a càdlàg stochastic process, which is adapted to some filtration
F = (Ft)t≥0 and satisfies E(|Mt|) < ∞, for each t ≥ 0, and E(Mt|Fs) = Ms

(respectively E(Mt|Fs) ≥Ms, E(Mt|Fs) ≤Ms) (P− a.s.), for each s ≤ t. A
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MATHEMATICAL DEFINITIONS AND BASIC FACTS

martingale M is uniformly integrable if

sup
t≥0

E(|Mt|1{|Mt|≥n})→ 0, as n→∞, (1.1)

and it is square-integrable if supt≥0 E(|Mt|2) < ∞. It is possible to check
that a square-integrable martingale is also uniformly integrable using de la
Vallée-Poussin’s criterion.4

A local martingale (respectively a locally square integrable martingale) is a
càdlàg stochastic process, which is adapted to some filtration and for which
there exists a non-decreasing sequence of finite stopping times (τn)n∈N with
τn ↗∞, as n→∞, such that the stopped process M τn = (Mt∧τn1{τn>0})t≥0

is a uniformly integrable martingale (respectively a square-integrable martin-
gale), for each n ∈ N. Such a sequence of stopping times is called a localizing
sequence.

Given a càdlàg and adapted stochastic process A = (At)t≥0 on a stochastic
basis (Ω,F ,F,P), we can define its first order variation over [0, T ] (also
called total variation), for each ω ∈ Ω, as

V (A)T (ω) = sup
n−1∑
i=0

|Ati+1(ω)− Ati(ω)|,

where the supremum is taken over all partitions 0 ≤ t0 < t1 < · · · < tn = T
of [0, T ]. Then, we say that A has finite variation over each finite interval
(or simply finite variation) if supT≥0 V (A)T (ω) <∞, for all ω ∈ Ω, and that
A has integrable variation if E(V (A)∞) < ∞. Using a localizing sequence
(τn)n∈N, we can define the notion of locally integrable variation by asking
that V (A)τn has integrable variation, for each n ∈ N.5

We are now ready to give the definition of a semimartingale which will be
used throughout the thesis.

4de la Vallée-Poussin’s criterion : if there exists a measurable function φ : R+ → R+

such that limx→∞ φ(x)/x =∞ and supt≥0 E(φ(|Mt|)) <∞, then (1.1) is satisfied.
5The notion of locally finite variation is not needed, since it is equivalent to the notion

of finte variation. Note also that some authors use the terminology bounded variation
instead of finite variation.
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Definition 1.2.1 (Semimartingales and special semimartingales). A semi-
martingale S = (St)t≥0 on a stochastic basis (Ω,F ,F,P) is a càdlàg stochas-
tic process of the form

St = X0 + At +Mt, t ≥ 0, (1.2)

where M = (Mt)t≥0 is a local martingale with M0 = 0 and A = (At)t≥0 is
a process with finite variation with A0 = 0, both adapted w.r.t. the filtration
F. Moreover, a semimartingale S is special if A is a process with locally
integrable variation.

In some texts, the condition for S to be a special semimartingale is replaced
by the requirement that A is predictable, i.e. measurable w.r.t. the σ-field
P on Ω × R+ generated by the left-continuous adapted processes.6 In fact,
these definitions can be shown to be equivalent (see e.g. Proposition 4.23
p.44 in [Jacod and Shiryaev, 2003]). The predictability of A guarantees the
uniqueness (up to indistinguishability7) of the decomposition (1.2), which is
then called the canonical decomposition of S.

1.2.2 Stochastic Integral and Quadratic Variation

To describe stochastic processes we need, in general, to go further than first
order variation. In order to define this notion of second order variation, we
now briefly recall the definition of the stochastic or Itô integral and the notion
of stochastic differential equations.

We start by considering the class S of simple predictable stochastic processes
of the form

Ht = H01{0} +
n∑
i=1

Hi1{(t,.)∈Kτi,τi+1K}, t ≥ 0

where 0 = τ1 ≤ τ2 ≤ · · · ≤ τn+1 <∞ (P−a.s.) is a sequence of stopping times
such that, for each i = 1, . . . , n + 1, Hτi is Fτi-measurable8 and |Hi| < ∞

6In the rest, we will also need the notion of optionnality (i.e. A is optional) which means
measurable w.r.t. the σ-field O on Ω× R+ generated by the càdlàg adapted processes.

7Two stochastic processes X and Y are indistinguishable if P(Xt = Yt,∀t ≥ 0) = 1.
8Given a stopping time τ for some filtration F = (Ft)t≥0, we can define the stopped

σ-algebra Fτ as Fτ = {A ∈ F|A ∩ {τ ≤ t} ∈ Ft, t ≥ 0}.
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(P − a.s.).9 For any càdlàg process S = (St)t≥0, we can then define the
application IS : S→ D as

IS(H)t = H0S0 +
n∑
i=1

Hi(S
τi+1

t − Sτit ), t ≥ 0.

It is possible to show that S is dense in L for the so-called ucp topology
(see p.57 in [Protter, 2005] for the definition of this topology and for the
density result) and that, when S is a semimartingale10 the application IS is
continuous for this topology (see Theorem 11 p.58 in [Protter, 2005]). Thus,
it is possible to extend uniquely (up to indistinguishability) IS as linear
mapping on L, i.e. IS : L → D, which we call the stochastic integral of H
w.r.t. S and which we denote IS(H) =

∫ .
0
HsdSs and IS(H) =

∫ .
0+
HsdSs,

when we want to exclude 0. We refer to Section II.4 in [Protter, 2005] for
more informations and details about the stochastic integral.

A stochastic differential equation (SDE) is an equation relating the value
of a process with the value of the stochastic integral of this process. More
precisely, if S = (St)t≥0 is some semimartingale with S0 = 0 and f : Ω ×
R+ × R→ R some function, we can write the equation

Yt = Y0 +

∫ t

0+

f(., s, Ys−)dSs, t ≥ 0,

where Y0 is some F0-measurable random variable, which we call a stochastic
differential equation (SDE). We will also often denote this expression by

dYt = f(., t, Yt−)dSt, t ≥ 0

with Y0 = Y0 (P−a.s.). For the general results on the existence and unique-
ness of the solutions of these equations see e.g. Section V.3 starting p.255 in
[Protter, 2005].

9Here Kτi, τi+1K is a stochastic interval. A stochastic interval is a subset of R+ × Ω of
the form Jτ1, τ2K = {(t, ω) : τ1(ω) ≤ t ≤ τ2(ω)}, where τ1 and τ2 are two random times.
The preceding expression defines the closed stochastic interval. The open Kτ1, τ2J and
half-open intervals Jτ1, τ2J and Kτ1, τ2K are defined in a similar way.

10Note that Protter’s definition of semimartingale is different from ours. Definition 1.2.1
corresponds to what they call classical semimartingale and the two definitions are, in fact,
equivalent (see Theorem 47 p.146 in [Protter, 2005]).
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The quadratic covariation (or square bracket) of two semimartingales S and
U is then given by

[S, U ]t = StUt − S0U0 −
∫ t

0+

Us−dSs −
∫ t

0+

Ss−dUs, t ≥ 0 (1.3)

and [S, S] is called the quadratic variation of S which we write [S, S]t = [S]t,
for all t ≥ 0.

It is possible to obtain a simpler expression for the square-bracket as a sum
of a predictable part and of a jump process. For this recall that given two
locally square-integrable martingales M and N , it is possible to define their
predictable quadratic covariation (or angle bracket) as the unique (up to in-
distinguishability) predictable process 〈M,N〉 = (〈M,N〉t)t≥0 with locally
integrable variation such that (MtNt − 〈M,N〉t)t≥0 is a local martingale.
The process 〈M,M〉 is called the predictable quadratic variation of M and
we write 〈M〉t = 〈M,M〉t, for all t ≥ 0. Note that a continuous local mar-
tingale is also locally square-integrable and, thus, that the angle bracket is
defined also when M and N are continuous local martingales.

It is known that any local martingale M can be decomposed uniquely (again
up to indistinguishability) as Mt = M0 +M c

t +Md
t , t ≥ 0, where M0 is an F0-

measurable random variable, M c = (M c
t )t≥0 is a continuous local martingale

and Md = (Md
t )t≥0 is a purely discontinuous local martingale11 (see e.g.

Theorem 4.18 p.42-43 in [Jacod and Shiryaev, 2003]). The process M c is
then called the continuous part of M . Thus, to any semimartingale S we
can associate its continuous martingale part Sc which corresponds to the
continuous martingale part of the local martingale in any decomposition of
the form (1.2).12 Using these additional facts, it is possible to show that

[S, U ]t = 〈Sc, U c〉t +
∑

0<s≤t

∆Ss∆Us, t ≥ 0, (1.4)

(see e.g. Theorem 4.52 p.55 in [Jacod and Shiryaev, 2003]).

11A local martingale M = (Mt)t≥0 is purely discontinuous if M0 = 0 and (MtNt)t≥0 is
a local martingale for any continuous local martingale N = (Nt)t≥0.

12To prove that it is unique (up to indistinguishability) take two possible decompositions
St = S0 + At + Mt and St = S0 + Ãt + M̃t, for all t ≥ 0. Let Nt = At − Ãt = M̃t −Mt,
t ≥ 0. Then, by definition N is a local martingale and a finite variation process, and,
by Lemma 4.14 p.41 in [Jacod and Shiryaev, 2003], it is thus purely discontinuous. So,
M c
t = M̃ c

t , for all t ≥ 0.
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We can now state the famous Itô formula for semimartingales (see Theorem
4.57 p.57 in [Jacod and Shiryaev, 2003] for the proof).

Lemma 1.2.2 (Itô’s formula). Let S = (St)t≥0 be a semimartingale and
f ∈ C2(R). Then, (f(St))t≥0 is a semimartingale and

f(St) = f(S0) +

∫ t

0+

f ′(Ss−)dSs +
1

2

∫ t

0+

f ′′(Ss−)d〈Sc〉s

+
∑

0<s≤t

(f(Ss)− f(Ss−)− f ′(Ss−)∆Ss) , t ≥ 0.

1.2.3 Random Measures, Compensators and Compen-
sated Integrals

In this section, we introduce the notions of random measures and their com-
pensators. These will be used to describe the jumps of a stochastic process
by encoding the random numbers and sizes of jumps.

First, a random measure on R+ × E13 is a family µ = (µ(ω; dt, dx))ω∈Ω of
measures on (R+ × E,B(R+) ⊗ B(E)) (where the σ-algebra is the tensor
product of the Borel σ-algebras) satisfying µ(ω; {0} ×E) = 0, for all ω ∈ Ω.
Recall that P , respectively O, denote the predictable, respectively optional,
σ-algebras on Ω×R+. Since a random measure is a measure for each ω ∈ Ω,
we can define its integral process H ∗ µ = ((H ∗ µ)t)t≥0, for any function H
on Ω× R+ × E which is O ⊗ B(E)-measurable, by

H ∗ µt(ω) =

∫ t

0

∫
E

H(ω, s, x)µ(ω; ds, dx), (1.5)

if
∫ t

0

∫
E
|H(ω, s, x)|µ(ω; ds, dx) <∞ and by H ∗µt(ω) =∞ otherwise, for all

t ≥ 0.

Rather than working directly with random measures, it is often useful to
consider their predictable compensator (or simply compensator) which are

13Here the space (E,B(E)), where B(E) is is the Borel σ-algebra on E, has to be a
Blackwell space, see Chapitre III in [Dellacherie and Meyer, 1975] for a definition. In the
rest of the thesis, (E,B(E)) will be R with its Borel σ-algebra which is a Blackwell space
and represents the space of the jump sizes of some stochastic process.
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defined in the following proposition (for the proof see Theorem 1.8 p.66-67
in [Jacod and Shiryaev, 2003]).

Proposition 1.2.3 (Compensation formula). Given a random measure µ
satisfying some additional conditions14, there exists a random measure, called
the compensator of µ and denoted µp, which is unique up to a P-null set and
is defined by the following equivalent conditions :

1. E(H ∗ µ∞) = E(H ∗ µp∞), for any function H on Ω×R+ ×E which is
P ⊗ B(E)-measurable,

2. for any function H on Ω×R+×E which is P ⊗B(E)-measurable and
such that |H| ∗µ is a (càdlàg adapted non-decreasing) locally integrable
processes, |H| ∗ µp is a locally integrable processes and H ∗ µ−H ∗ µp
is a local martingale.

Moreover, there exists a predictable integrable non-decreasing process A and
a kernel K(ω; t, dx) from (Ω× R+,P) to (E,B(E)) such that

µp(ω; dt, dx) = dAt(ω)K(ω; t, dx). (1.6)

One of the most useful examples of a random measure is the jump measure
associated with a càdlàg adapted stochastic process S which is defined on
R+ × R by

µS(ω; dt, dx) =
∑
s>0

1{∆Ss(ω)6=0}δ(s,∆Ss(ω))(ds, dx),

where δ is the Dirac measure at some point in R+ × R. Intuitively, this
measure counts the number of jumps of different sizes in some subset of
time. We have, given any function H for which (1.5) is defined, that∫ t

0+

∫
R
H(ω, s, x)µS(ω; ds, dx) =

∑
0<s≤t

1{∆Ss(ω) 6=0}H(ω; s,∆Ss(ω)), t ≥ 0.

In fact, for the jump measure µS there exists a version of the compensator
(see Proposition 1.17 p.70 in [Jacod and Shiryaev, 2003]) with some nice

14We omit these conditions since the random measures we will consider in this thesis
automatically satisfy them. See Theorem 1.8 p.66-67 in [Jacod and Shiryaev, 2003] for
the details.
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properties which we denote νS and we call the compensator of the jump
measure. Then, given any function H on Ω × R+ × E which is P ⊗ B(E)-
measurable and for which |H| ∗ µS is locally integrable, we can define the
compensated integral (or stochastic integral w.r.t. µS − νS) by

H ∗ (µS − νS) = H ∗ µS −H ∗ νS (1.7)

which is a purely discontinuous local martingale.15 An equivalent (but more
cumbersome) notation is the following

H ∗ (µS − νS)t =

∫ t

0+

∫
R
H(ω; s, x) (µS(ω; ds, dx)− νS(ω; ds, dx)) , t ≥ 0.

1.2.4 Characteristics and Canonical Representations
of Semimartingales

Semimartingales can be described very precisely using a triplet (B,C, ν)
consisting of some finite variation process B, the quadratic variation of the
continuous martingale part C and the compensator of the jump measure ν.
In this section, we define this triplet formally and give some properties that
are related to it.

Consider some semimartingale S = (St)t≥0 on (Ω,F ,F = (Ft)t≥0,P). Let
h : R → R be a so-called truncation function, i.e. a function which is
bounded and such that h(x) = x is some neighbourhood of 0.16 Define

Š(h)t =
∑

0<s≤t

(∆Ss − h(∆Ss)) , t ≥ 0

and S(h) = S − Š(h). Since ∆Ss − h(∆Ss) 6= 0 only if |∆Ss| > a for some
a > 0, we see that S(h) has bounded (by a) jumps and that it is a special
semimartingale (see Lemma 2.24 p.44 in [Jacod and Shiryaev, 2003]). Thus,
we can write its canonical decomposition

S(h)t = S0 +B(h)t +M(h)t, t ≥ 0,

15Note that the standard definition is different and we used, in fact, a useful defining
property. See Definition 1.27 p.72 in [Jacod and Shiryaev, 2003].

16In latter chapters, we will generally choose h(x) = x1{|x|≤1}.
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where B(h) is a predictable finite variation process with B(h)0 = 0 and
M(h) is a local martingale with M(h)0 = 0. Using this decomposition, we
can define the characteristics (or characteristic triplet) of S as the triplet
(B,C, ν) where B = B(h), C = 〈Sc〉 and ν = νS is the compensator of the
jump measure µS. Note that we can choose a version of ν such that process
(|x|2 ∧ 1) ∗ ν is locally integrable (see 2.13 p.77 in [Jacod and Shiryaev,
2003]).

Given a semimartingale S = (St)t≥0 with characteristics (B,C, ν) and jump
measure µS, we thus have the following representation

St = S0 +Bt + Sct + h ∗ (µS − ν)t + ((x− h(x)) ∗ µS)t , t ≥ 0, (1.8)

which is called the canonical representation of S.17 (It is automatic that
the compensated integral and the integral w.r.t. the jump measure are well-
defined for any truncation function h.)

It is possible to simplify this expression even further when S is a special
semimartingale, which happens if and only if (|x|2∧|x|)∗ν is locally integrable
(see Proposition 2.29 p.82 in [Jacod and Shiryaev, 2003]). Then, if St = S0 +
At+Mt, t ≥ 0, is its canonical decomposition, we have that the compensated
integral is well-defined for the function H(ω; t, x) = x and

St = S0 + At + Sct + x ∗ (µS − ν)t, t ≥ 0, (1.9)

(see Corollary 2.38 p.85 in [Jacod and Shiryaev, 2003]).

1.2.5 Processes with Independent Increments (PII) and
Lévy Processes

One of the most important and tractable examples of semimartingales is
given by a class of processes with independent increments and, their station-
ary counterparts, the Lévy processes. For these processes, the characteristic
triplet is deterministic, has a simple form and completely characterizes the
law of the process. In this section, we give the basic definitions and some
important results related to these processes.

17Note that we will often commit a slight abuse of notation by writing f(x)∗µ for f ∗µ.
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Definition 1.2.4 (Processes with independent increments (PII) and Lévy
processes). A process with independent increments S = (St)t≥0 (also abbre-
viated as PII) on a stochastic basis (Ω,F ,F,P) is a càdlàg stochastic process
adapted to F = (Ft)t≥0 such that S0 = 0 and the increments St−Ss are inde-
pendent of Fs, for each s ≤ t. A Lévy process L = (Lt)t≥0 is a PII for which
the distribution of the increments Lt − Ls, depends only on the difference
t− s, for each s ≤ t.18

Note that a PII is not necessarily a semimartingale (see Section II.5 starting
p.114 in [Jacod and Shiryaev, 2003] for more information), but in this thesis
we will be interested only in PII that are also semimartingales. The following
fact, which is given in Theorem 4.15 p.106 in [Jacod and Shiryaev, 2003], will
be useful in our context.

Proposition 1.2.5. Let S = (St)t≥0 be a semimartingale with S0 = 0. Then,
S is a PII if and only if there exists a version (B,C, ν) of its characteristics
that are deterministic.

In fact, as mentioned above, it is possible to go further and to show that the
characteristic function of a PII semimartingale is completely determined by
its characteristics (see Theorem 4.15 p.106 and Theorem 4.25 p.110 in [Jacod
and Shiryaev, 2003]) but we will not use these facts. However the similar
statement for Lévy processes will be used a lot (see Corollary 4.19 p.107 in
[Jacod and Shiryaev, 2003] for the proof).

Proposition 1.2.6 (Characteristics of Lévy processes and Lévy-Khintchine
formula). A stochastic process L = (Lt)t≥0 is a Lévy process if and only if L
is a semimartingale admitting a version of its characteristics (B,C, ν) (for
the truncation function h) that has the form

Bt = at, Ct = σ2t, ν(ω; dt, dx) = dtK(dx),

where a ∈ R, σ2 ≥ 0 and K is a positive measure on R such that K({0}) = 0
and ∫

R
(|x|2 ∧ 1)K(dx) <∞.

18Note that in older texts (e.g. in [Jacod and Shiryaev, 2003]) the term process with
stationary independent increments or PIIS is used rather than the now more common
term of Lévy process.
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Moreover, for all t ≥ 0 and u ∈ R,

E(eiuLt) = exp t

(
iua− 1

2
σ2u2 +

∫
R
(eiux − 1− iuh(x))K(dx)

)
.

In general, the exponent

Ψ(u) = iua− 1

2
σ2u2 +

∫
R
(eiux − 1− iuh(x))K(dx)

is called the Lévy-Khintchine exponent of L. We interchangeably call (a, σ2, K)
and (B,C, ν) the characteristic triplet of L. From the above proposition, we
also see that a Lévy process is always a semimartingale. Thus, we can write
its canonical representations (1.8) and (1.9) which in this case are called
Lévy-Itô decomposition.

Proposition 1.2.7. (Lévy-Itô decomposition) Let L = (Lt)t≥0 be a Lévy
process with characteristic triplet (a, σ2, K) (for the truncation function h).
We have

Lt = at+ σWt + h ∗ (µL − ν)t + ((x− h(x)) ∗ µL)t, t ≥ 0, (1.10)

where µL is the jump measure, W = (Wt)t≥0 is a standard Brownian motion
and ν(ω; ds, dx) = dsK(dx). Moreover, when

∫
R(|x|2 ∧ |x|)K(dx) <∞, (i.e.

when L is a special semimartingale) we have

Lt = ct+ σWt + x ∗ (µL − ν)t, t ≥ 0, (1.11)

where

c = a+

∫
R
(x− h(x))K(dx).

An important comment is that, in the Lévy case, the processes in the de-
composition (1.10) are independent. This is not necessarily true for the more
general semimartingale decomposition. An other important fact is that Lévy
processes do not jump at fixed times, i.e. we have ∆Lt = 0 (P − a.s.), for
all t ≥ 0.

Lévy processes also posses a duality property which relates them to a ”time-
reversed” version of the process. The following proposition is stated in
Lemma 3.1 in [Carmona et al., 2001] and is an adaptation of the general
result given in e.g. Proposition 41.8 p.287 in [Sato, 1999].
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Proposition 1.2.8 (Time-reversal of Lévy processes). Let L = (Lt)t≥0 be a
Lévy process. Then, for each t > 0, the process (L̃s)0≤s≤t given by

L̃s = Lt − L(t−s)−,

for all 0 ≤ s ≤ t, has the same law as (Ls)0≤s≤t.

The last fact about Lévy processes that we will use extensively is the fol-
lowing law of large numbers. This result is well known (see e.g. Section 36
starting p.245 in [Sato, 1999]) but its proof relies, in general, on the approx-
imation of Lévy processes by random walks. We give here another method
based on the study of the Lévy-Itô decomposition.19

Proposition 1.2.9 (Law of Large Numbers for Lévy Processes). Let L =
(Lt)t≥0 be a Lévy process with characteristic triplet (a, σ2, K) for the trun-
cation function h(x) = x1{|x|≤1}. Assume that

∫
R(|x|2 ∧ |x|)K(dx) < ∞ (or

equivalently that E(|L1|) <∞). Then, as t→∞,

Lt
t

a.s.→ E(L1) = a+

∫
{|x|>1}

xK(dx).

Proof. The equivalence between E(|L1|) <∞ and the condition on the mea-
sure K follows from Theorem 25.3 p.159 in [Sato, 1999]. Then, using the
Lévy-Itô decomposition (1.11), we obtain

Lt
t

= E(L1) + σ
Wt

t
+
x ∗ (µL − ν)t

t
, t ≥ 0.

But, as well known, Wt

t

a.s.→ 0, as t→∞. Now let M = x ∗ (µL − ν). We will
show that

Mt

t

a.s.→ 0. (1.12)

Note that, for all t ≥ 0, using (1.7), we obtain

Mt = M
(1)
t +M

(2)
t +M

(3)
t

=

∫ t

0

∫
{|x|≤1}

x (µL − ν) (ds, dx) +

∫ t

0

∫
{|x|>1}

xµL(ds, dx)

−
∫ t

0

∫
{|x|>1}

xdsK(dx).

19This proof also appears in [Spielmann, 2018].

32



MATHEMATICAL DEFINITIONS AND BASIC FACTS

By Theorem 9 p.142 in [Liptser and Shiryayev, 1989], to prove that

M
(1)
t

t

a.s.→ 0, (1.13)

it is enough that D̃∞ < +∞ (P − a.s.), where D̃ is the compensator of the
process20 D = (Dt)t≥0 defined by

Dt =
∑

0<s≤t

(∆M
(1)
s /(1 + s))2

1 + |∆M (1)
s /(1 + s)|

, for all t ≥ 0,

and where ∆M
(1)
s are the jumps of M (1). Since ν({s}, dx) = λ({s})K(dx) =

0, because λ is the Lebesgue measure, we obtain ∆M
(1)
s = ∆Ls1{|∆Ls|≤1} by

Theorem 1 p.176 in [Liptser and Shiryayev, 1989]. Thus, for all t ≥ 0,

Dt =
∑

0<s≤t

(∆Ls)
21{|∆Ls|≤1}/(1 + s)

1 + s+ |∆Ls|1{|∆Ls|≤1}
=

∫ t

0

∫
R

x21{|x|≤1}/(1 + s)

1 + s+ |x|1{|x|≤1}
µL(ds, dx).

Therefore, D̃ satisfies

D̃t =

∫ t

0

∫
R

|x|21{|x|≤1}/(1 + s)

1 + s+ |x|1{|x|≤1}
dsK(dx)

≤
(∫ t

0

1

(1 + s)2
ds

)(∫
{|x|≤1}

|x|2K(dx)

)
≤
(∫ ∞

0

1

(1 + s)2
ds

)(∫
{|x|≤1}

|x|2K(dx)

)
=

∫
{|x|≤1}

|x|2K(dx) <∞,

for all t ≥ 0, where the last integral is finite by definition of the measure K.
So, D̃∞ <∞ (P− a.s.), so (1.13) holds and if K({|x| > 1}) = 0, (1.12) also
holds.

Therefore, without loss of generality, we suppose that K({|x| > 1}) > 0.

Note that
M

(3)
t

t
= −

∫
{|x|>1} xK(dx), for all t ≥ 0, so to complete the proof

20Up to now, we had only defined the compensator of a random measure. The general
definition is as follows: the compensator Ã = (Ã)t≥0 of an increasing locally integrable
process A = (At)t≥0 is the unique increasing locally integrable predictable process such

that (At−Ãt)t≥0 is a local martingale. See e.g. Theorem 3 p.33 in [Liptser and Shiryayev,
1989] for the proof of the existence of this object.
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we need to show that

M
(2)
t

t

a.s.→
∫
{|x|≤1}

xK(dx). (1.14)

It is well known that the jump measure µL of a Lévy process is a Poisson
random measure with intensity λ×K, where λ is the Lebesgue measure (see
e.g. Proposition 3.7 p.79 in [Cont and Tankov, 2004]). Then, by Lemma
2.8 p.46-47 in [Kyprianou, 2014], M (2) is a compound Poisson process with
rate K({|x| > 1}) and jump distribution K({|x| > 1})−1K(dx)|{|x|>1} (where
K(dx)|{|x|>1} represents the restriction of the measure K to the set {|x| > 1}).
More precisely, we can write

M
(2)
t =

Nt∑
i=1

Yi, t ≥ 0,

where N = (Nt)t≥0 is a Poisson process with rate K({|x| > 1}) and (Yi)i∈N∗
is a sequence of i.i.d. random variables, which is independent from N and
with distribution K({|x| > 1})−1K(dx)|{|x|>1}. Conditioning on Nt, using

the strong law of large numbers and noting that Nt
a.s.→ +∞, we obtain

M
(2)
t

Nt

=
1

Nt

Nt∑
i=1

Yi
a.s.→ E(Y1) = K(|x| > 1)−1

∫
{|x|>1}

xK(dx).

Finally, using the fact that Nt
t

a.s.→ K({|x| > 1}), we obtain

M
(2)
t

t
=
Nt

t

M
(2)
t

Nt

a.s.→
∫
{|x|>1}

xK(dx),

as t→∞, and so (1.14) holds, which implies (1.12).

1.2.6 Doléans-Dade Exponential and Exponential Trans-
form

As we will see, the main objects of this thesis, the generalized Ornstein-
Uhlenbeck processes, can be seen as the solution of certain stochastic differ-
ential equations. Thus, we will need some stochastic analogue of the expo-
nential function which we define in this section. The following specialization
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of Theorem 4.61 p.59 in [Jacod and Shiryaev, 2003] defines this object.

Proposition 1.2.10. (Doléans-Dade Exponential) Let S = (St)t≥0 be a
semimartingale. The equation

dYt = Yt−dSt, t ≥ 0,

Y0 = 1 admits a unique (up to indistinguishability) càdlàg adapted solution.
This solution, which is denoted E(S) = (E(S)t)t≥0 and called the Doléans-
Dade or stochastic exponential, is a semimartingale and is given explicitly
by

E(S)t = exp

(
St −

1

2
〈Sc〉t

) ∏
0<s≤t

(1 + ∆Ss)e
−∆Ss , t ≥ 0.

Furthermore,

1. when S is a local martingale, then E(S) is a local martingale and

2. we have E(S) 6= 0 on the stochastic interval J0, τJ and E(S) = 0 on
Jτ,∞J, where τ = inf{t ≥ 0 : ∆St = −1}, with inf{∅} =∞.

Actually, we have the following slightly more general result.

Remark 1.2.11. We can replace the initial condition Y0 = 1 in the SDE of
Proposition 1.2.10 by Y0 = Z where Z is any F0-measurable random variable.
Then, the claimed result still holds and the solution is given by

E(S)t = Z exp

(
St −

1

2
〈Sc〉t

) ∏
0<s≤t

(1 + ∆Ss)e
−∆Ss , t ≥ 0.

See Théorème 6.2 p.190 in [Jacod, 1979] for a proof.

We see that when ∆St > −1, for all t ≥ 0, we have also E(S)t > 0, for all
t ≥ 0. In that case, we can define its exponential transform as the process
Ŝ = (Ŝt)t≥0 given by Ŝt = ln(E(S)t), i.e. the process such that exp Ŝt =

E(S)t, for all t ≥ 0. It is easy to see that Ŝ is again a semimartingale and
that

Ŝt = St −
1

2
〈Sc〉t +

∑
0<s≤t

(ln(1 + ∆Ss)−∆Ss),
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because, rewriting Doléans-Dade’s exponential, we have

E(S)t = exp

(
St −

1

2
〈Sc〉t +

∑
0<s≤t

(ln(1 + ∆Ss)−∆Ss)

)
.

The jumps of Ŝ are given by

∆Ŝt = ln(1 + ∆St), t ≥ 0.

Moreover, it is possible to check that when L is a Lévy process, its exponen-
tial transform L̂ is also a Lévy process (see Corollary 8.16 p.137 in [Jacod
and Shiryaev, 2003]). In fact, it is possible to go a bit further and obtain the
characteristics of the exponential transform from the initial process and vice-
versa (see Theorem 8.10 p.136 in [Jacod and Shiryaev, 2003] for the proof of
the following proposition).

Proposition 1.2.12. (Characteristics of the Exponential Transform) Let
S = (St)t≥0 be a semimartingale with ∆St > −1, for all t ≥ 0. Let

Ŝ = (Ŝt)t≥0 be its exponential transform. Denote by (B,C, νS), respectively

(B̂, Ĉ, νŜ), the characteristics of S for the truncation function h, respectively

of Ŝ for the truncation function ĥ. Then,
B = B̂ + Ĉ

2
+
(
h(ex − 1)− ĥ(x)

)
∗ νŜ

C = Ĉ

1{x∈G} ∗ νS = 1{(ex−1)∈G} ∗ νŜ
and 

B̂ = B − C
2

+
(
ĥ(ln(1 + x))− h(x)

)
∗ νS

Ĉ = C

1{x∈G} ∗ νŜ = 1{ln(1+x)∈G} ∗ νS,
for any set G ∈ B(R).

1.3 Generalized Ornstein-Uhlenbeck (GOU)

processes

In this section, we define the Generalized Ornstein-Uhlenbeck or GOU pro-
cesses which will be the main objects of this thesis. We start with a brief re-
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view of the classical Ornstein-Uhlenbeck processes and its generalizations.

The Ornstein-Uhlenbeck (OU) process was initially introduced as model for
the motion of a particle in a fluid which is subjected a frictional force, see
the classic paper [Uhlenbeck and Ornstein, 1930]. Rescaling the physical
parameters, it can be defined by the following SDE:

dYt = −λYtdt+ dBt, t ≥ 0, (1.15)

where Y0 = y ∈ R is the starting point of the process, λ > 0 and B = (Bt)t≥0

is a standard Brownian motion. This SDE can easily be solved to obtain the
explicit expression

Yt = e−λt
(
y +

∫ t

0

e−λsdBs

)
= ye−λt +

∫ t

0

e−λ(t−s)dBs, t ≥ 0. (1.16)

Since it has been introduced, the OU process has been used to model numer-
ous phenomena that exhibited the so-called mean-reverting property, which
essentially means that the phenomenon has a tendency to revert to some
mean state over time. For example, it has famously been suggested in [Va-
sicek, 1977] as a model for the evolution of interest rates.

From a mathematical point of view, a first generalization of the OU process
appears in [Hadjiev, 1985]. In this first generalization, the Brownian motion
B is replaced with a more general Lévy process L = (Lt)t≥0, so that the
considered equation becomes

Yt = −λYtdt+ dLt, t ≥ 0, (1.17)

with a similar explicit form. Such processes are called Lévy-driven or Lévy-
type Ornstein-Uhlenbeck (LOU) processes21. Again, these processes were
used in mathematical finance as models for the interest rates, see [Patie,
2005].

We see, in this first generalization of the OU process, that the idea is to
replace the Brownian motion B appearing in (1.15) by a more general process.
In a similar fashion, we could also try to replace −λdt by something more

21Note that some authors, see e.g. [Hadjiev, 1985], used the term generalized Ornstein-
Uhlenbeck processes for these processes. However, since they are not the most general
possible, this terminology is less natural.
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general. In fact, this line of inquiry leads naturally to the study of the
following linear stochastic differential equation

dYt = dXt + Yt−dRt, t ≥ 0, (1.18)

where Y0 is some F0-measurable random variable, and X = (Xt)t≥0 and
R = (Rt)t≥0 are two semimartingales. We see that, if Rt = −λt and Xt = Bt,
we obtain the OU process and, if R is as before and Xt = Lt, we obtain the
LOU process. It is in that sense that (1.18) is a generalized version of (1.15)
and (1.17). Note also that when Xt = 0 and Y0 = 1, we obtain the Doléans-
Dade exponential.

1.3.1 Existence and Uniqueness of Solutions for Linear
SDEs

The question of the existence and uniqueness of the solutions of (1.18) is
settled in the following proposition.

Proposition 1.3.1 (Théorème 6.8 p.194 in [Jacod, 1979]). Define the fol-
lowing sequence of stopping times τ0 = 0 and τn+1 = inf{t > τn|∆Rt = −1},
for all n ∈ N, with inf{∅} =∞. Then, the SDE (1.18) with the initial condi-
tion Y0 = y ∈ R admits an unique (up to indistinguishability) solution given

by Yt =
∑

n∈N Y
(n)
t 1{(t,.)∈Jτn,τn+1J}, with

Y
(n)
t = U

(n)
t

(
y + ∆Xτn +

∫ t

0+

(U
(n)
s− )−1d(Xτn+1

s −Xτn
s )

−
∫ t

0+

(U (n)
s )−11{(s,.)∈J0,τn+1J}d[X,Rτn+1 −Rτn ]s

) (1.19)

where U
(n)
t = E(Rτn+1 −Rτn)t, t ≥ 0.

Proof. To prove the uniqueness, let Y = (Yt)t≥0 and Ỹ = (Ỹt)t≥0 be two
solutions of (1.18). Then, Zt = Yt − Ỹt solves

dZt = Zt−dRt, t ≥ 0,

with Z0 = 0, and thus, by Remark 1.2.11, Y is indistinguishable from Ỹ .
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We now show that the semimartingale defined in Equation (1.19) solves
(1.18). For simplicity, write X(n) = Xτn+1 − Xτn and R(n) = Rτn+1 − Rτn .
Define

H
(n)
t = (y + ∆Xτn)1{(t,.)∈Jτn,∞J} +

∫ t

0+

(U
(n)
s− )−1dX(n)

s

−
∫ t

0+

(U (n)
s )−11{(s,.)∈J0,τn+1J}d[X,R(n)]s, t ≥ 0.

Letting Ỹ (n) = U (n)H(n), we see that Ỹ (n) = Y (n) = Y on the set Jτn, τn+1J
and Ỹ

(n)
− = Y

(n)
− = Y− on the set Kτn, τn+1K.

Taking the difference between U
(n)
t H

(n)
t and U

(n)
τn H

(n)
τn , and using the defini-

tions of the square brackets (1.3), we obtain, for all t ≥ 0,

Ỹ
(n)
t = (y + ∆Xτn)1{(t,.)∈Jτn,∞J} +

∫ t

τn+

H
(n)
s− dU

(n)
s +

∫ t

τn+

U
(n)
s− dH

(n)
s

+ [H(n), U (n)]t − [H(n), U (n)]τn .

But, [H(n), U (n)]τn = 0. Moreover, U (n) and H(n) are constant on J0, τnK, so∫ t

τn+

H
(n)
s− dU

(n)
s =

∫ t

0+

H
(n)
s− dU

(n)
s

and ∫ t

τn+

U
(n)
s− dH

(n)
s =

∫ t

0+

U
(n)
s− dH

(n)
s .

This yields, for all t ≥ 0,

Ỹ
(n)
t = (y + ∆Xτn)1{(t,.)∈Jτn,∞J} +

∫ t

0+

H
(n)
s− dU

(n)
s +

∫ t

0+

U
(n)
s− dH

(n)
s

+ [H(n), U (n)]t.

Now we simplify the different terms appearing on the r.h.s. of the equation
above. First, we have dU

(n)
t = U

(n)
t− dR

(n)
t , t ≥ 0, and so∫ t

0+

H
(n)
s− dU

(n)
s =

∫ t

0+

H
(n)
s− U

(n)
s− dR

(n)
s =

∫ t

0+

Ỹ
(n)
s− dR

(n)
s . (1.20)
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Then, we have∫ t

0+

U
(n)
s− dH

(n)
s = X

(n)
t −

∫ t

0+

U
(n)
s−

U
(n)
s

1{(s,.)∈J0,τn+1J}d[X,R(n)]s. (1.21)

Next, we have

[H(n), U (n)]t =

∫ t

0+

U
(n)
s− d[H(n), R(n)]s

= [X(n), R(n)]t −
∫ t

0+

U
(n)
s−

U
(n)
s

1{(s,.)∈J0,τn+1J}d[[X,R(n)], R(n)]s

= [X(n), R(n)]t −
∫ t

0+

U
(n)
s− ∆R

(n)
s

U
(n)
s

1{(s,.)∈J0,τn+1J}d[X,R(n)]s

(1.22)

since

[[X,R(n)], R(n)]t =

∫ t

0+

∆R
(n)
s−d[X,R(n)]s,

by Proposition 4.49 p.52 in [Jacod and Shiryaev, 2003].

Now, since ∆U
(n)
t = U

(n)
t− ∆R

(n)
t , for all t ≥ 0, we obtain∫ t

0+

U
(n)
s−

U
(n)
s

1{(s,.)∈J0,τn+1J}d[X,R(n)]s +

∫ t

0+

U
(n)
s− ∆R

(n)
s

U
(n)
s

1{(s,.)∈J0,τn+1J}d[X,R(n)]s

=

∫ t

0+

(
U

(n)
s−

U
(n)
s

+
U

(n)
s− ∆R

(n)
s

U
(n)
s

)
1{(s,.)∈J0,τn+1J}d[X,R(n)]s

=

∫ t

0+

(
U

(n)
s−

U
(n)
s

+
∆U

(n)
s

U
(n)
s

)
1{(s,.)∈J0,τn+1J}d[X,R(n)]s

= [X,R(n)]t∧(τn+1)−.

Thus, putting the above computation and (1.20), (1.21) and (1.22) together,
we obtain

Ỹ
(n)
t = (y + ∆Xτn)1{(t,.)∈Jτn,∞J} +X

(n)
t +

∫ t

0+

Ỹ
(n)
s− dR

(n)
s

+ [X(n), R(n)]t − [X,R(n)]t∧(τn+1)−.
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Now, using Theorem 23 p.68 part (iii) in [Protter, 2005], we obtain

[X(n), R(n)]t = [Xτn+1 , R(n)]t − [Xτn , R(n)]t = [X,R(n)]t∧τn+1 .

And so, using Theorem 23 p.68 part (i) in [Protter, 2005] and the fact that

∆R
(n)
τn+1 = −1, we obtain on the set {τn+1 <∞},

[X(n), R(n)]t − [X,R(n)]t∧(τn+1)− = ∆[X,R(n)]τn+11{(t,.)∈Jτn+1,∞J}

= ∆Xτn+1∆R
(n)
τn+1

1{(t,.)∈Jτn+1,∞J}

= −∆Xτn+11{(t,.)∈Jτn+1,∞.J}

On the event Kτn, τn+1K, we also have
∫ t

0+
Ỹ

(n)
s− dR

(n)
s =

∫ t
0+
Y

(n)
s− dR

(n)
s , and thus

we have shown that

Ỹ
(n)
t = y +X

(n)
t +

∫ t

0+

Y
(n)
s− dR

(n)
s + ∆Xτn1{(t,.)∈Jτn,∞J}

−∆Xτn+11{(t,.)∈Jτn+1,∞J}.

(1.23)

Next, note that

Y
τn+1

t − Y τn
t =


0 on J0, τnJ
Yt − Yτn on Jτn, τn+1J
Yτn+1 − Yτn on Jτn+1,∞J.

Since Y (n) = 0 on J0, τnJ and Y = Ỹ (n) = (Ỹ (n))τn+1 on Jτn, τn+1J with

Ỹ
(n)
τn+1 = 0, this is equivalent to

Y
τn+1

t − Y τn
t = Ỹ

(n)
t − Yτn1{(t,.)∈Jτn,∞J} + Yτn+11{(t,.)∈Jτn+1,∞J},

for al t ≥ 0. Since Yτn = ∆Xτn on {τn < ∞} and Yτn+1 = ∆Xτn+1 on
{τn+1 <∞}, we obtain using (1.23), that

Y
τn+1

t − Y τn
t = y +X

(n)
t +

∫ t

0+

Ys−dR
(n)
s , t ≥ 0.

Note that τn →∞, as n→∞, and so we can sum the preceding expression
over n ∈ N and we obtain a finite expression for Yt at each time t ≥ 0.
Moreover, Y solves (1.18) by construction.
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We see that a sequence of stopping times appears to avoid that the Doléans-
Dade exponential of R becomes 0. When the jumps of R avoid −1, this
problem doesn’t occur and we have τ0 = 0 and τ1 = ∞ (P − a.s.), which
yields the following useful corollary.

Corollary 1.3.2. Assume that τ1 =∞ (P−a.s.). Then, the SDE (1.18) with
the initial condition Y0 = y ∈ R admits an unique (up to indistinguishability)
solution given by

Yt = E(R)t

(
y +

∫ t

0+

E(R)−1
s−dXs −

∫ t

0+

E(R)−1
s d[X,R]s

)
, t ≥ 0.

In fact, in the context of models for the surplus of an insurance company,
E(R) represent the price of some asset and thus we will require it to be
strictly positive, which is equivalent to the condition ∆Rt > −1, for all t ≥ 0
(P− a.s.).

1.3.2 Definition and Relation with Linear SDEs

We see, from Corollary 1.3.2, that the solution of (1.18) starts to look like the
explicit form of the classical OU process (1.16). In fact when, in addition to
τ1 =∞ (P− a.s.), we have [X,R]t = 0 (P− a.s.), for all t ≥ 0, the solution
of (1.18) is given by

Yt = E(R)t

(
y +

∫ t

0+

E(R)−1
s−dXs

)
= eR̂t

(
y +

∫ t

0+

e−R̂s−dXs

)
, (1.24)

for all t ≥ 0, where R̂ is the exponential transform of R. Due to its sim-
ilarity with the classical OU process, we call this process, the generalized
Ornstein-Uhlenbeck (GOU) process associated with X and R. The follow-
ing proposition shows that in many cases of interest the assumption that
[X,R]t = 0 (P− a.s.), for all t ≥ 0, is automatically satisfied.

Proposition 1.3.3. Assume that X and R are two independent semimartin-
gales and that at least one of the processes is a Lévy process. Then, [X,R]t =
0 (P− a.s.), for all t ≥ 0.

42



MATHEMATICAL DEFINITIONS AND BASIC FACTS

Proof. Without loss of generality, we assume that X is a Lévy process. We
show first that ∑

0<s≤t

∆Xs∆Rs = 0 (P− a.s.), t ≥ 0.

Fix t ≥ 0, since X and R are càdlàg adapted processes there exists two count-
able sequences (χi)i∈N∗ and (ηj)j∈N∗ which exhaust the jumps on (0, t] of X
and R respectively, see Proposition I.1.32 p.8 in [Jacod and Shiryaev, 2003].
Since, the processes are independent these sequences are also independent.
Then, note that

P

(∑
0<s≤t

∆Xs∆Rs 6= 0

)
= P

(
∞⋃
i=1

∞⋃
j=1

{χi = ηj}

)

≤
∞∑
i=1

∞∑
j=1

P(χi = ηj).

Since X is a Lévy process, we have P(∆Xs 6= 0) = 0 and so P(χi = s) = 0,
for all i ∈ N∗ and s ∈ (0, t]. Thus, we obtain by independence P(χi = ηj|ηj =
s) = 0 and

P(χi = ηj) = E[P(χi = ηj|ηj)] = 0,

for all i, j ∈ N∗. This yields the claimed fact.

Thus, [X,R]t = 〈Xc, Rc〉t (P− a.s.), for all t ≥ 0, by Equation (1.4). But, a
product of independent continuous local martingales (w.r.t. some filtration)
is also a local martingale (w.r.t. the same filtration) (see e.g. Theorem 2.4
in [Cherny, 2006]) and thus the result follows from Corollary I.4.55 p.55 in
[Jacod and Shiryaev, 2003].
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Chapter 2

GOU Processes as Weak Limits
of Discrete-time Processes

In this chapter1, we prove that the GOU process can be seen as the weak
limit when the time steps goes to 0 of a large class of discrete-time processes,
which are classically used to model the surplus of insurance companies facing
both insurance and market risks. In our opinion, this chapter is the most
important part of the thesis since it gives a theoretical argument for the
importance of the GOU process in ruin theory and, more generally, in applied
probability.

The chapter is structured as follows: after introducing some notations, we
point to the related results in Section 2.1 and we prove the main weak con-
vergence theorem in Section 2.2. From this result, we also deduce the con-
vergence in distribution of the ruin times in the same section. Then, we give
sufficient conditions for the convergence of the ultimate ruin probability in
Section 2.3 and of the moments in Section 2.4, under general conditions. We
illustrate these results using examples from actuarial theory and mathemat-
ical finance.

Let (ξk)k∈N∗ and (ρk)k∈N∗ be two independent sequences of i.i.d. random
variables, with ρk > 0 (P−a.s.) for all k ∈ N∗. The autoregressive process of
order 1 with random coefficients, abbreviated RCA(1) or RCAR(1), see e.g.

1This chapter is based on joint work with Yuchao Dong in [Dong and Spielmann, 2019]
which is accepted for publication in Insurance: Mathematics and Economics.
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[Nicholls and Quinn, 1982], is given by

θk = ξk + θk−1ρk, k ∈ N∗. (2.1)

and θ0 = y ∈ R. Such processes, which are also called stochastic recurrence or
difference equations, appear frequently in applied probability. For example,
it is suggested in [Anděl, 1976] that RCA(1) processes could be useful in
problems related to hydrology, meteorology and biology. We also refer to
[Vervaat, 1979] for a more exhaustive list of examples. In ruin theory, the
RCA(1) process is a classic model for the surplus capital of an insurance
company where (ξk)k∈N∗ represents a stream of random payments or income
and (ρk)k∈N∗ represents the random rates of return from one period to the
next, see for example [Nyrhinen, 1999], [Nyrhinen, 2001], [Nyrhinen, 2012]
and [Tang and Tsitsiashvili, 2003].

In this chapter, we will prove the convergence of the process (2.1) when the
timestep goes to 0 and under a suitable re-normalization to the generalized
Ornstein-Uhlenbeck (GOU) process given by

Yt = eRt
(
y +

∫ t

0+

e−Rs−dXs

)
, t ≥ 0, (2.2)

where R = (Rt)t≥0 and X = (Xt)t≥0 are independent stable Lévy processes
with drift.2

One of the main uses of weak convergence is to prove the convergence of cer-
tain functionals of the path of the processes to the functional of the limiting
process and to use the value of the latter as an approximation for the former,
when the steps between two payments and their absolute values are small.
Motivated by ruin theory, we will use the weak convergence result to prove
the convergence of the ultimate ruin probability and the moments.

In general, the solution of the linear equation (1.18) or its explicit form (1.24)
are chosen as a model for insurance surplus processes with investment risk
on an a priori basis. The ruin problem is then studied under the heading

2In our notation of Section 1.2.6, we denoted the basic process R and its exponential
transform by R̂. Here, since the important process is the exponential transform, we denote
it for simplicity by R and we will use R̃ to denote the inverse exponential transform
R̃t = L(eRt), for t ≥ 0, where L is the stochastic logarithm. (See Section 8 starting
p.134 in [Jacod and Shiryaev, 2003], for the definition and the properties of the stochastic
logarithm.)
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”ruin problem with investment” for different choices of R and X. We refer to
Section 3.1 for an overview of the relevant literature. The main convergence
results of this chapter could thus also be seen as a theoretical justification
for the continuous-time model (2.2) in the context of models for insurance
surplus processes with both insurance and market risks in the spirit of [Duffie
and Protter, 1992].

Before pointing to the related literature, we now state the Burkholder-Davis-
Gundy (BDG) and Doob inequalities which we will be used later in this
chapter for convenience.

Proposition 2.0.1 (Burkholder-Davis-Gundy (BDG) inequality, see Theo-
rem 6 p.70 and Theorem 7 p.75 in [Liptser and Shiryayev, 1989]). Let τ be
a stopping time (which can be ∞), M = (Mt)t≥0 be a local martingale, with
M0 = 0 and q ≥ 1. Then, there exists constants cq and Cq (independent of τ
and M) such that

cqE
(
[M ]q/2τ

)
≤ E

(
sup

0≤t≤τ
(Mt)

q

)
≤ CqE

(
[M ]q/2τ

)
.

The Doob inequality is usually stated for uniformly integrable martingales,
but it can be adapted to non-negative submartingales.

Proposition 2.0.2 (Doob’s inequality, Theorem (2-2) p.44 in [Mémin, 1978]).
Let T ∈ [0,∞], q > 1 and M = (Mt)t≥0 be a non-negative submartingale sat-
isfying E(M q

T ) <∞. Then,

E

(
sup

0≤t≤T
(Mt)

q

)
≤
(

q

q − 1

)q
E(M q

T ).

2.1 Related Results

In actuarial mathematics, similar weak convergence results and approxima-
tions of functionals to the ones studied in this chapter are a well developed
line of research. In [Iglehart, 1969] it is shown that the compound Poisson
process with drift converges weakly to a Brownian motion with drift and it is
shown that the finite-time and ultimate ruin probability converge to those of
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the limiting model. These results are extended to processes with more general
jump times in [Grandell, 1977] and with more general jump sizes in [Bur-
necki, 2000] and [Furrer et al., 1997]. Similar convergence results are proven
for the integral of a deterministc function w.r.t. a compound Poisson process
in [Harrison, 1977], this corresponds to the assumption that the insurance
company can invest at a deterministic interest rate. Some of the previous
results are generalized in [Paulsen and Gjessing, 1997], where it is shown
that a general model with a jump-diffusion surplus process and stochastic
jump-diffusion investment converges to a particular diffusion process.

More closely related to our results are the papers [Cumberland and Sykes,
1982] and [Dufresne, 1989]. In [Cumberland and Sykes, 1982], it is shown
that the AR(1) process (i.e. when the coefficients ρk are deterministic and
constant) converges weakly to a standard OU process. In [Dufresne, 1989],
it is shown that when the variables ξk are deterministic and satisfy some
regularity conditions, we have a similar weak convergence result where the
process X in (2.2) is replaced by a deterministic function.

The results in [Duffie and Protter, 1992] are also closely related. In that pa-
per, the authors study the weak convergence of certain discrete-time models
to continuous-time models appearing in mathematical finance and prove the
convergence of the values of certain functionals such as the call option price.
In particular, for the case ξk = 0, for all k ∈ N∗, they show, using the same
re-normalization as we do (see below at the beginning of Section 2.2), that
the discrete-time process (2.1) converges to the Doléans-Dade exponential
of a Brownian motion with drift. This generalizes the famous paper [Cox
et al., 1979] where it is shown that the exponential of a simple random walk
correctly re-normalized converges to the Black-Scholes model.

Finally, the relationship between the discrete-time process (2.1) and (2.2)
was also studied in [de Haan and Karandikar, 1989], where it is shown that
GOU processes are continuous-time analogues of RCA(1) processes in some
sense. More precisely, they show that any continuous-time process S =
(St)t≥0 for which the sequence (Snh)n∈N∗ of the process sampled at rate h > 0
satisfies an equation of the form (2.1), for all h > 0, with some additional
conditions, is a GOU process of the form (2.2), where X and R are general
Lévy processes. Our main result is coherent with this analogy but does not
seem to be otherwise related.

We thus contribute to these results by treating the case where (ξk)k∈N∗ and
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(ρk)k∈N∗ are sequences of non-degenerate random variables and by giving, in
the square-integrable case, approximations of the ultimate ruin probability
and the moments for the RCA(1) process.

2.2 Weak Convergence of the Processes and

of the Ruin Times

In this section, we show that the discrete-time process correctly re-normalized
converges weakly to the GOU process and prove the convergence in distribu-
tion of the ruin times. We introduce the following set of assumptions.

Assumption (Hα). We say that a random variable Z satisfies (Hα) if its
distribution function FZ satisfies

FZ(−x) ∼ kZ1 x
−α and 1− FZ(x) ∼ kZ2 x

−α,

as x→∞, for some 1 < α < 2 and some constants kZ1 , k
Z
2 such that kZ1 +kZ2 >

0. Note that this assumption implies that E(|Z|) <∞.

Assumption (H2). We say that a random variable Z satisfies (H2) if Z is
square-integrable with Var(Z) > 0, where Var(Z) is the variance of Z.

We now introduce some notations and recall some classical facts about weak
convergence on metric spaces, stable random variables and Lévy processes.

Recall that the space D of càdlàg functions R+ → R can be equipped with the
Skorokhod metric which makes it a complete and separable metric space, see
e.g. Section VI.1, p.324 in [Jacod and Shiryaev, 2003]. Let D be the Borel
sigma-field for this topology. Given a sequence of random elements Z(n) :
(Ω(n),F (n),P(n)) 7→ (D,D), with n ≥ 1, we say that (Z(n))n≥1 converges
weakly or in distribution to Z : (Ω,F ,P) 7→ (D,D), if the laws of Z(n)

converge weakly to the law of Z, when n→∞. We denote weak convergence

by Z(n) d→ Z and we use the same notation for the weak convergence of
measures on R.

Concerning stable random variables Z of index α, the most common way to
define them is trough their characteristic functions:

E(eiuZ) = exp[iγu− c|u|α(1− iβsign(u)z(u, α))],
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where γ ∈ R, c > 0, α ∈ (0, 2], β ∈ [−1, 1] and

z(u, α) =

{
tan
(
πα
2

)
if α 6= 1,

− 2
π

ln |u| if α = 1.

Stable Lévy processes (Lt)t≥0 are Lévy processes such that Lt is equal in
law to some stable random variable, for each t ≥ 0, with fixed parameters
β ∈ [−1, 1] and γ = 0 (see e.g. Definition 2.4.7 p.93 in [Embrechts et al.,
1997].)

Finally, note that if (Zk)k∈N∗ is a sequence of i.i.d. random variables such that
Z1 satisfies either (Hα) or (H2), then there exists a stable random variable
Kα and some constant cα > 0 such that

n∑
k=1

Zk − µZ
cαn1/α

d→ Kα, (2.3)

as n→∞ where µZ = E(Z1). In fact, when Z1 satisfies (H2), α = 2, cα = 1
and Kα is the standard normal distribution with variance Var(Z1). (See e.g.
Section 2.2 p.70-81 in [Embrechts et al., 1997] for these facts.)

The main assumption we will use and which combines the previous ones is
the following.

Assumption (H). We assume that (ξk)k∈N∗ and (ρk)k∈N∗ are two indepen-
dent sequences of i.i.d. random variables, with ρk > 0 (P − a.s.) for all
k ∈ N∗, and that ξ1 (resp. ln(ρ1)) satisfies either (Hα) or (H2) (resp. (Hβ)
or (H2).) We denote by cα (resp. cβ) the constant and by Kα (resp. Kβ) the
limiting stable random variable appearing in (2.3). In addition, we denote
by (Lαt )t≥0 (resp. (Lβt )t≥0) the stable Lévy processes obtained by putting

Lα1
d
= Kα (resp. Lβ1

d
= Kβ).

We can now state the main results of this section. Fix n ∈ N∗, we want
to divide the time interval into n subintervals of length 1/n and update the
discrete-time process (2.1) at each time point of the subdivision. To formalize
this, we define the following process

θ(n)

(
k

n

)
= ξ

(n)
k + θ(n)

(
k − 1

n

)
ρ

(n)
k , k ∈ N∗, (2.4)
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where (ξ
(n)
k )k∈N∗ and (ρ

(n)
k )k∈N∗ have to be defined from the initial sequences.

Following an idea in [Dufresne, 1989], we let µξ = E(ξ1) and µρ = E(ln(ρ1))
and define

ξ
(n)
k =

µξ
n

+
ξk − µξ
cαn1/α

and ρ
(n)
k = exp(γ

(n)
k ) where

γ
(n)
k =

µρ
n

+
ln(ρk)− µρ
cβn1/β

.

These definitions ensure that

E

(
n∑
k=1

ξ
(n)
k

)
= µξ and E

(
n∑
k=1

ln(ρ
(n)
k )

)
= µρ.

Moreover, when ξ1 and ln(ρ1) both satisfy (H2), we choose α = β = 2
and cα = cβ = 1, and then we have the following variance stabilizing prop-
erty:

Var

(
n∑
k=1

ξ
(n)
k

)
= Var(ξ1) and Var

(
n∑
k=1

ln(ρ
(n)
k )

)
= Var(ln(ρ1)).

Finally, we define the filtrations F (n)
0 = {∅,Ω}, F (n)

k = σ((ξ
(n)
i , ρ

(n)
i ), i =

1, . . . , k), k ∈ N∗ and F (n)
t = F (n)

[nt], for t ≥ 0, where [.] is the floor function

and define θ(n) as the (continuous-time) stochastic process given by

θ
(n)
t = θ(n)

(
[nt]

n

)
, t ≥ 0.

Theorem 2.2.1. Under (H), we have θ(n) d→ Y , as n → ∞, where Y =
(Yt)t≥0 is the GOU process (2.2) with Xt = µξt + Lαt and Rt = µρt + Lβt ,
for all t ≥ 0. In addition, Y satisfies the following stochastic differential
equation :

Yt = y +Xt +

∫ t

0+

Ys−dR̃s, t ≥ 0, (2.5)

where

R̃t = Rt +
1

2
〈Rc〉t +

∑
0<s≤t

(
e∆Rs − 1−∆Rs

)
, t ≥ 0,

and Rc is the continuous martingale part of R and ∆Rt is its jump at time
t ≥ 0.
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Example 2.2.2 (Pareto losses and stable log-returns). The assumption (Hα)
is quite general and simple to check. To illustrate it we take the negative of a
Pareto (type I) distribution with shape parameter 1 < α < 2 for the loss ξ1,
i.e. the random variable defined by its distribution function Fξ(x) = (−x)−α,
for x ≤ −1. The condition on α ensures that ξ1 has a finite first moment, but
an infinite second moment. Moreover, ξ1 then satisfies (Hα), with constants
kξ1 = 1 and kξ2 = 0. We also have that µξ = −α/(α− 1) and that

n∑
k=1

ξk − µξ
cα,ξn1/α

d→ −Kα,ξ,

as n→∞, with

cα,ξ =
π

2Γ(α) sin(απ/2)
,

where Γ is the Gamma function and where Kα,ξ is a stable random variable
of index α, with γ = 0, c = 1 and β = 1 (see e.g. p.62 in [Uchaikin and
Zolotarev, 1999]).

For the log-returns ln(ρ1), we take a stable distribution with index 1 < α̃ < 2,
and parameters γ̃ = 0, c̃ = 1 and β̃ ∈ [−1, 1]. Then, we have µρ = 0 and

n∑
k=1

ln(ρk)− µρ
cα̃,ρn1/α̃

d
= Kα̃,ρ,

for all n ∈ N∗. Thus, Theorem 2.2.1 implies that θ(n) d→ Y , as n→∞, where

Yt = eRt
(
y +

∫ t

0+

e−Rs−dXs

)
, t ≥ 0,

with Xt = µξt + Lαt and Rt = µρt + Lα̃t , where Lα and Lα̃ are stable Lévy

processes with Lα1
d
= −Kα,ξ and Lα̃1

d
= Kα̃,ρ.

As already mentioned, we will be interested in the application of Theorem
2.2.1 to ruin theory and we now state the main consequence for this line of
study. Define the following stopping times, for n ≥ 1,

τn(y) = inf{t > 0 : θ
(n)
t < 0}

with the convention inf{∅} = +∞, and also

τ(y) = inf{t > 0 : Yt < 0}.
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Theorem 2.2.3. Assume that (H) holds. We have, for all T ≥ 0,

lim
n→∞

P(τn(y) ≤ T ) = P(τ(y) ≤ T )

and, equivalently, τn(y)
d→ τ(y), as n→∞.

Theorem 2.2.3 implies the convergence of E(f(τn(y)) to E(f(τ(y)), for any
continuous and bounded function f : R+ → R. For example, we can obtain
the following convergence result for a simple form of the discounted penalty
function.

Corollary 2.2.4. Assume that (H) holds. We have

lim
n→∞

E(e−ατ
n(y)1{τn(y)<+∞}) = E(e−ατ(y)1{τ(y)<+∞}),

for all α > 0.

When ξ1 and ln(ρ1) both satisfy (H2), the limiting stable random variable
is, in fact, the standard normal random variable and the limiting process is
defined by two independent Brownian motions with drift.

Corollary 2.2.5 (Pure diffusion limit). Assume that ξ1 and ln(ρ1) both sat-

isfy (H2), then θ(n) d→ Y , as n → ∞, for Y = (Yt)t≥0 defined by (2.2) with
Rt = µρt + σρWt and Xt = µξt + σξW̃t, for all t ≥ 0, where (Wt)t≥0 and
(W̃t)t≥0 are two independent standard Brownian motions and σ2

ξ = Var(ξ1)
and σ2

ρ = Var(ln(ρ1)).

Example 2.2.6 (Pareto losses and NIG log-returns). To illustrate (H2) we
take again the negative of a Pareto (type I) distribution for the loss ξ1 but
with shape parameter α ≥ 2, so that the distribution admits also a second
moment. For the log-returns, ln(ρ1) we take the normal inverse gaussian
NIG(α, β, δ, µ) with parameters 0 ≤ |β| < α, δ > 0 and µ ∈ R, i.e. the
random variable defined by the following moment generating function

E(eu ln(ρ1)) = exp
(
µu+ δ

(
γ −

√
α2 − (β + u)2

))
,

where γ =
√
α2 − β2, for all u ∈ R.

Then, it is well known that

µξ = − α

α− 1
, σ2

ξ =
α

(α− 1)2(α− 2)
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and that

µρ = µ+
βδ

γ
, σ2

ρ = δ
α2

γ3
.

Thus, in this case, Corollary 2.2.5 yields θ(n) d→ Y , with

Yt = eµρt+σρWt

(
y +

∫ t

0+

e−µρs−σρWsd(µξs+ σξW̃s)

)
, t ≥ 0,

and where (Wt)t≥0 and (W̃t)t≥0 are two independent standard Brownian mo-
tions.

We now turn to the proofs of the previous theorems. The main strategy is
to rewrite the discrete-time process as a stochastic integral and to use the
well-known weak convergence result for stochastic integrals based on the UT
(uniform tightness) condition for semimartingales.

To rewrite the discrete-time process, note that, by induction, the explicit
solution of (2.4), for all n ∈ N∗ and k ∈ N∗, is given by

θ(n)

(
k

n

)
= y

k∏
i=1

ρ
(n)
i +

k∑
i=1

ξ
(n)
i

k∏
j=i+1

ρ
(n)
j

=
k∏
i=1

ρ
(n)
i

(
y +

k∑
i=1

ξ
(n)
i

i∏
j=1

(ρ
(n)
j )−1

)
,

where, by convention, we set
∏k

j=k+1 ρ
(n)
j = 1, for all n ∈ N∗. Thus,

θ
(n)
t =

[nt]∏
i=1

ρ
(n)
i

y +

[nt]∑
i=1

ξ
(n)
i

i∏
j=1

(ρ
(n)
j )−1

 . (2.6)

and setting X
(n)
t =

∑[nt]
i=1 ξ

(n)
i and R

(n)
t =

∑[nt]
i=1 γ

(n)
i , we obtain

θ
(n)
t = eR

(n)
t

(
y +

∫ t

0+

e−R
(n)
s− dX(n)

s

)
. (2.7)

In fact, the above rewriting of the discrete-time process will prove very useful
for most proofs in this chapter.
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Remark 2.2.7. An other way to prove the weak convergence would be to
remark that since [X(n), R(n)]t = 0, for all n ∈ N∗, we find that θ(n) satisfies
the following stochastic differential equation :

θ
(n)
t = y +X

(n)
t +

∫ t

0+

θ
(n)
s− dR̃

(n)
s ,

where

R̃
(n)
t = R(n) +

∑
0<s≤t

(e∆R
(n)
s − 1−∆R(n)

s ) =

[nt]∑
i=1

(eγ
(n)
i − 1),

and to use the well-known stability results for solutions of stochastic differen-
tial equations. We refer to [Duffie and Protter, 1992] for an interesting appli-
cation of this method for different models in mathematical finance. However,
this way seems harder, in our case, since the process (R̃

(n)
t )t≥0 is less explicit

than (R
(n)
t )t≥0.

We now recall the UT condition, the weak convergence result and give two
lemmas to check the condition in our case.

Definition 2.2.8. Consider a sequence of real-valued semimartingales Z(n)

defined on (Ω(n),F (n), (F (n)
t )t≥0,P

(n)), for each n ∈ N∗. Denote by H(n) the
set given by

H(n) = {H(n)|H(n)
t = Ln,0 +

p∑
i=1

Ln,i1[ti,ti+1)(t), p ∈ N,

0 = t0 < t1 < · · · < tp = t,

Ln,i is F (n)
ti −measurable with |Ln,i| ≤ 1}.

The sequence (Z(n))n∈N∗ is UT (also called P-UT in [Jacod and Shiryaev,
2003], for ”uniformly tight” and ”predictably uniformly tight”) if for all t > 0,
for all ε > 0, there exists M > 0 such that,

sup
H(n)∈H(n),n∈N∗

P(n)

(∣∣∣∣∫ t

0+

H
(n)
s− dZ

(n)
s

∣∣∣∣ > M

)
< ε.

For more information see Section VI.6 in [Jacod and Shiryaev, 2003]. One
of the interesting consequences of the UT condition is given by the following
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proposition which is a particular case of Theorem 6.22 p.383 of [Jacod and
Shiryaev, 2003].

Proposition 2.2.9. Let (H(n), Z(n))n∈N∗ be a sequence of real-valued semi-

martingales defined on (Ω(n),F (n), (F (n)
t )t≥0,P

(n)). If (H(n), Z(n))
d→ (H,Z)

as n → ∞ and the sequence (Z(n))n∈N∗ is UT, then Z is a semimartingale
and when n→∞,(

H(n), Z(n),

∫ .

0

H
(n)
s− dZ

(n)
s

)
d→
(
H,Z,

∫ .

0

Hs−dZs

)
.

The following lemma is based on Remark 6.6 p.377 in [Jacod and Shiryaev,
2003].

Lemma 2.2.10. Let (Z(n))n∈N∗ be a sequence of real-valued semimartingales

with locally bounded variation defined on (Ω(n),F (n), (F (n)
t )t≥0,P

(n)). If for
each t > 0 and each ε > 0, there exists M > 0 such that

sup
n∈N∗

P(n)
(
V (Z(n))t > M

)
< ε,

where V (.) denotes the total first order variation of a process, then (Z(n))n≥1

is UT.

Proof. For each n ∈ N∗, H(n) ∈ H(n) and t > 0, we find p ∈ N and 0 = t0 <
t1 < · · · < tp = t such that∣∣∣∣∫ t

0+

H
(n)
s− dZ

(n)
s

∣∣∣∣ ≤ |Ln,0|+ p∑
i=1

|Ln,i||Zti+1
− Zti | ≤ 1 +

p∑
i=1

|Zti+1
− Zti |

≤ 1 + V (Z(n))t.

Thus, the assumption implies the UT property.

The following lemma is based on Remark 2-1 in [Mémin and S lomiński, 1991].

Lemma 2.2.11. Let (Z(n))n∈N∗ be a sequence of real-valued local martingales

defined on (Ω(n),F (n), (F (n)
t )t≥0,P

(n)) and Z a real-valued semimartingale on
(Ω,F , (Ft)t≥0,P). Denote by ν(n) the compensator of the jump measure of

Z(n). If Z(n) d→ Z as n→∞, then the following condtions are equivalent:
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(i) (Z(n))n∈N∗ is UT,

(ii) for each t > 0 and each ε > 0, there exists a,M > 0 such that

sup
n≥1

P(n)

(∫ t

0

∫
R
|x|1{|x|>a}ν(n)(ds, dx) > M

)
< ε.

Proof. From Lemma 3.1. in [Jakubowski et al., 1989] we know that, under

the assumption Z(n) d→ Z as n→∞, (i) is equivalent to asking that for each
t > 0 and each ε > 0, there exists M > 0 such that

sup
n≥1

P(n)(V (Ba,n)t > M) < ε,

where V (.) is the total first order variation of a process and Ba,n is the first
semimartingale characteristic of Z(n) (for the truncation function h(x) =
x1{|x|>a}).

Let’s compute V (Ba,n) in this case. For a > 0 and n ∈ N∗, define Z̃n,a
t =

Z
(n)
t −

∑
0<s≤t ∆Zs1{|∆Zs|>a} and Ba,n

t =
∫ t

0

∫
R x1{|x|>a}ν

(n)(ds, dx). We have,

Z̃n,a
t = Z̃n,a

t +Ba,n
t −B

a,n
t

= Z
(n)
t −

∫ t

0

∫
R
x1{|x|>a}(µ

(n)(ds, dx)− ν(n)(ds, dx))−Ba,n
t ,

where µ(n) is the jump measure of Z(n). Thus, since the two first terms
on the r.h.s. of the last line above are local martingales, their difference is
a local martingale with bounded jumps and thus the first semimartingale
characteristic of Z(n) is Ba,n

t . So,

V (Ba,n)t =

∫ t

0

∫
R
|x|1{|x|>a}ν(n)(ds, dx)

and this finishes the proof.

We are now ready for the proof of Theorem 2.2.1.

Proof of Theorem 2.2.1. To be able to apply Proposition 2.2.9, we need show
that (eR

(n)
, X(n))n∈N∗ converges in law as n→∞ and that (X(n))n∈N∗ is UT.
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First, note that by definition of γ
(n)
k , we have

R
(n)
t =

[nt]∑
i=1

γ
(n)
k = µρ

[nt]

n
+

[nt]∑
i=1

ln(ρi)− µρ
cβn1/β

. (2.8)

But [nt]/n→ t as n→∞. By the stable functional convergence theorem (see
e.g. Theorem 2.4.10 p.95 in [Embrechts et al., 1997]), the sum in the r.h.s. of
the equation above converges weakly to a stable Lévy process (Lβt )t≥0 with

Lβ1
d
= Kβ. Thus, we obtain

(e−R
(n)
t )t≥0 =

exp

− [nt]∑
i=1

γ
(n)
k


t≥0

d→
(
e−µρt−L

β
t

)
t≥0

.

Similarly, by the definition of ξ
(n)
i , we have

X
(n)
t =

[nt]∑
i=1

µξ
n

+

[nt]∑
i=1

ξi − µξ
cαn1/α

= µξA
(n)
t +N

(n)
t , for all t ≥ 0. (2.9)

Applying the stable functional convergence theorem again, we obtain (N
(n)
t )t≥0

d→ (Lαt )t≥0, as n → ∞, where Lα is a stable Lévy motion, with Lα1
d
= Kα,

which is independent of (Lβt )t≥0 since the sequences (ξk)k∈N∗ and (ρk)k∈N∗ are
independent. Using the independence, we also have the convergence of the
couple (eR

(n)
, X(n)), as n→∞.

To prove that (X(n))n∈N∗ is UT, it is enough to prove that (A(n))n∈N∗ and
(N (n))n∈N∗ are both UT. Note that A(n) is a process of locally bounded vari-

ation for each n ≥ 1 with V (A(n)) = A(n). Since A
(n)
t ≤ t, for all n ∈ N∗, we

have
sup
n≥1

P(A
(n)
t > M) ≤ P(t > M),

for all M > 0 and thus, by Lemma 2.2.10, the sequence (A(n))n∈N∗ is UT.

Now, note that, when t > s and [nt] ≥ [ns] + 1, using the i.i.d. property of
(ξk)k∈N∗ we obtain

E(N
(n)
t −N (n)

s |Fs) =

[nt]∑
i=[ns]+1

E

(
ξi − µξ
cαn1/α

)
= 0.
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When t > s and [nt] < [ns]+1, N
(n)
t −N

(n)
s = 0, and thus E(N

(n)
t −N

(n)
s |Fs) =

0. This shows that N (n) is a local martingale for each n ∈ N∗. Then, denoting
by ν(n) the compensator of the jump measure of N (n) (which is deterministic
since N (n) is also a semimartingale with independent increments), we set

sn =

∫ t

0

∫
R
|x|1{|x|>1}ν

(n)(ds, dx),

for each n ∈ N∗, and we will show that the (deterministic) sequence (sn)n∈N∗
converges (and thus is bounded).

First, we have∫ t

0

∫
R
|x|1{|x|>1}ν

(n)(ds, dx) = E

(∑
0<s≤t

|∆N (n)
s |1{|∆N(n)|≥1}

)

=

[nt]∑
i=1

E

(∣∣∣∣ξi − µξcαn1/α

∣∣∣∣1{∣∣∣∣ ξi−µξcαn
1/α

∣∣∣∣≥1

}
)

=
[nt]

cαn1/α
E
(
|ξ1 − µξ|1{|ξ1−µξ|≥cαn1/α}

)
.

To compute the expectation on the r.h.s., note that for any non-negative
random variable Z and constant a ≥ 0 we have

E(Z1{Z≥a}) = E

(∫ Z

0

1{Z≥a}dx

)
= E

(∫ ∞
0

1{Z≥x∨a}dx

)
=

∫ ∞
0

P(Z ≥ x ∨ a)dx

= aP(Z ≥ a) +

∫ ∞
a

P(Z ≥ x)dx.

Thus,

sn =
[nt]

cαn1/α
E
(

(ξ1 − µξ) 1{(ξ1−µξ)≥cαn1/α}

)
+

[nt]

cαn1/α
E
(
− (ξ1 − µξ) 1{−(ξ1−µξ)≥cαn1/α}

)
= [nt]P

(
ξ1 ≥ µξ + cαn

1/α
)

+
[nt]

cαn1/α

∫ ∞
cαn1/α

P (ξ1 ≥ µξ + x) dx

+ [nt]P
(
ξ1 ≤ µξ − cαn1/α

)
+

[nt]

cαn1/α

∫ ∞
cαn1/α

P (ξ1 ≤ µξ − x) dx.
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Using the fact that ξ1 satisfies (Hα), we see that P
(
ξ1 ≤ µξ − cαx1/α

)
∼

kξ11 c
−α
α x−1 and P

(
ξ1 ≥ µξ + cαx

1/α
)
∼ kξ12 c

−α
α x−1, as x→∞. So,

lim
n→∞

sn = lim
n→∞

kξ11

cαα

[nt]

n
− lim

n→∞

[nt]

cαn1/α

kξ11 c
1−α
α n(1−α)/α

1− α

+ lim
n→∞

kξ12

cαα

[nt]

n
− lim

n→∞

[nt]

cαn1/α

kξ12 c
1−α
α n(1−α)/α

1− α

=
kξ11 + kξ12

cαα

α

α− 1
t.

(2.10)

Thus, the sequence is bounded and taking M > 0 large enough, we find
supn≥1 P(sn > M) < ε, for each ε > 0, and, by Lemma 2.2.11, we have then

shown that the sequence (N (n))n∈N∗ is UT.

To conclude we obtain, using Proposition 2.2.9 and the continuous mapping

theorem with h(x1, x2, x3) = (x3 + y)/x2, (θ
(n)
t )t≥0

d→ (Yt)t≥0 where Y =
(Yt)t≥0 is given by (2.2) with Rt = µρt+ Lβt , Xt = µξt+ Lαt , for all t ≥ 0.

In this case, we have [R,X]t = 0, for all t ≥ 0, (see Proposition 1.3.3) and
thus, using Itô’s lemma and Proposition 1.2.12, we obtain the stochastic
differential equation (2.5).

Proof of Theorem 2.2.3. We start by proving that P(inf0≤t≤T Yt = 0) = 0.
First, note that{

inf
0≤t≤T

Yt = 0

}
=

{
sup

0≤t≤T

(
−
∫ t

0+

e−Rs−dXs

)
= y

}
.

Using the independence of the processes, we then obtain

P

(
inf

0≤t≤T
Yt = 0

)
=

∫
D

P

(
sup

0≤t≤T

(
−
∫ t

0+

g(s−)dXs

)
= y

)
Pe−R(dg)

where D is the space of càdlàg functions and Pe−R is the law of the process
(e−Rt)t≥0. Denote S(g)t = −

∫ t
0+
g(s−)dXs, for all t ≥ 0.

Let (ti)i∈N∗ be an enumerating sequence of [0, T ]∩Q. Since S(g) = (S(g)t)t≥0

is a process with independent increments, S(g) has, for each fixed time ti > 0,
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the same law as a Lévy process L = (Lt)t≥0 defined by the characteristic
triplet (aL, σ

2
L, νL) with

aL =
µξ
ti

∫ ti

0

g(s−)ds, σ2
L =

σ2
ξ

ti

∫ ti

0

g2(s−)ds

and

νL(dx) =
νξ(dx)

ti

∫ ti

0

g(s−)ds,

where (aξ, σ
2
ξ , νξ) is the characteristic triplet of X, see Theorem 4.25 p.110 in

[Jacod and Shiryaev, 2003]. Then, it is well known that Lti admits a density
if σ2

L > 0 or νL(R) =∞, see e.g. Proposition 3.12 p.90 in [Cont and Tankov,
2004]. But, when ξ1 satisfies (H2), we have σ2

ξ > 0 and σ2
L > 0. When ξ1

satisfies (Hα), we have νξ(R) =∞ and νL(R) =∞. Thus, in both cases, Lti
admits a density and we have P(S(g)ti = y) = P(Lti = y) = 0.

Since (S(g)t)t≥0 is càdlàg we have

sup
0≤t≤T

S(g)t = sup
t∈[0,T ]∩Q

S(g)t,

and, since a càdlàg process reaches its supremum almost surely,

P

(
sup

0≤t≤T
S(g)t = y

)
= P

(
sup

t∈[0,T ]∩Q
S(g)t = y

)
≤ P

(⋃
i∈N

{Sti(g) = y}

)

= lim
N→∞

P

(
N⋃
i=1

{Sti(g) = y}

)
≤ lim

N→∞

N∑
i=1

P(Sti(g) = y) = 0.

Thus, P(inf0≤t≤T Yt = 0) = 0.

Next, note that we have{
inf

0≤t≤T
Yt < 0

}
⊆ {τ(y) ≤ T} ⊆

{
inf

0≤t≤T
Yt ≤ 0

}
and {

inf
0≤t≤T

θ
(n)
t < 0

}
⊆ {τn(y) ≤ T} ⊆

{
inf

0≤t≤T
θ

(n)
t ≤ 0

}
.

Since θ(n) d→ Y by Theorem 2.2.1, we obtain from the continuous mapping

theorem that inf0≤t≤T θ
(n)
t

d→ inf0≤t≤T Yt, for all T ≥ 0, since the supremum
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(and also the infimum) up to a fixed time are continuous for the Skorokhod
topology (see e.g. Proposition 2.4, p.339, in [Jacod and Shiryaev, 2003]). So,
by the portmanteau theorem,

lim sup
n→∞

P(τn(y) ≤ T ) ≤ lim sup
n→∞

P

(
inf

0≤t≤T
θ

(n)
t ≤ 0

)
≤ P

(
inf

0≤t≤T
Yt ≤ 0

)
= P

(
inf

0≤t≤T
Yt < 0

)
≤ P(τ(y) ≤ T ),

and

lim inf
n→∞

P(τn(y) ≤ T ) ≥ lim inf
n→∞

P

(
inf

0≤t≤T
θ

(n)
t < 0

)
≥ P

(
inf

0≤t≤T
Yt < 0

)
= P

(
inf

0≤t≤T
Yt ≤ 0

)
≥ P(τ(y) ≤ T ).

We will now turn to the application of the results of this section to the ap-
proximation of certain functionals. We mention here, that we only prove the
convergence of the approximation and leave the question of rate of conver-
gence to future research.

2.3 Approximation of the Ultimate Ruin Prob-

ability

In this section, we deduce an approximation of the ultimate ruin probability
of the discrete-time process. In order to be able to go further (and to obtain
practical expressions for the ultimate ruin probability and the moments of
the limiting process), we will from now on restrict ourselves to the (H2) case
which we summarize in the following assumption.

Assumption (H′). We assume that ξ1 and ln(ρ1) both satisfy (H2). So Y
is given by (2.2) with Xt = µξt+σξW̃t and Rt = µρt+σρWt or, equivalently,
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is given by the solution of (2.5) with the same X and R̃t = κρt + σρWt and
κρ = µρ + σ2

ρ/2.

We have seen that, when ξ1 and ln(ρ1) both satisfy (H2), we have

lim
n→∞

P(τn(y) ≤ T ) = P(τ(y) ≤ T ),

for all T ≥ 0. We would like to replace the finite-time ruin probability with
the ultimate ruin probability P(τ(y) < ∞) since for the latter, an explicit
expression exists for the limiting process. However, the following classic
example (see e.g. [Grandell, 1977]) shows that the ultimate ruin probability
may fail to converge even if the finite-time ruin probability does. In fact,
take (Z(n))t≥0 to be the deterministic process defined by

Z
(n)
t =

{
0 if t < n,

−1 if t ≥ n.

Then, we have Z(n) → Z, as n → ∞, where Zt = 0, for all t ≥ 0, and we
have also convergence of the finite-time ruin probability, since, as n → ∞,
inf0≤t≤T Z

(n)
t → 0, for all T > 0. But inf0≤t<∞ Z

(n)
t = −1, for all n ∈ N∗, and

so the ultimate ruin probability fails to converge.

In general, proving the convergence of the ultimate ruin probability is a
hard problem and depends on the particular model (see [Grandell, 1977] for
another discussion). Still, we now give a sufficient condition for this conver-
gence.

Theorem 2.3.1. Assume that (H′) holds. When µρ ≤ 0, we have

lim
n→∞

P(τn(y) <∞) = 1.

When µρ > 0, we assume additionally that there exists C < 1 and n0 ∈ N∗
such that

sup
n≥n0

E
(
e−2γ

(n)
1

)n
= sup

n≥n0

E
(

(ρ
(n)
1 )−2

)n
≤ C. (2.11)

Then,

lim
n→∞

P(τn(y) <∞) = P(τ(y) <∞) =
H(−y)

H(0)

where, for x ≤ 0,

H(x) =

∫ x

−∞
(σ2

ξ + σ2
ρz

2)−(1/2+µρ/σ2
ρ) exp

(
2µξ
σξσρ

arctan

(
σρ
σξ
z

))
dz.
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Before turning to the proof of the theorem, we give two examples to illustrate
Condition (2.11).

Example 2.3.2 (Approximation of the ruin probability with normal log-re-
turns). Take ξ1 to be any random variable satisfying (H2) and ln(ρ1) ∼
N (µρ, σ

2
ρ), with µρ > 0, then

E
(
e−2γ

(n)
1

)n
= e−2(µρ−σ2

ρ),

for all n ∈ N∗, so n0 = 1 and the condition C < 1 is equivalent to µρ > σ2
ρ.

Example 2.3.3 (Approximation of the ruin probability with NIG log-re-
turns). More generally, take ξ1 to be any random variable satisfying (H2)
and ln(ρ1) to be a normal inverse gaussian NIG(α, β, δ, µ) random variable
with 0 ≤ |β| < α, δ > 0 and µ ∈ R (recall Example 2.2.6 for the definition).
We remark that when n is large enough, we can use Taylor’s formula, to
obtain√

α2 −
(
β − 2√

n

)2

= γ +
2√
n

β

γ
− 2

n

α2

[α2 − (β − xn)2]3/2
, (2.12)

for some xn ∈ [0, 2/
√
n]. Since the mean is given by µρ = µ + δβ/γ, we

obtain using (2.12)

lim
n→∞

E
(
e−2γ

(n)
1

)n
= exp

(
−2µρ +

2δα2

γ3

)
= exp

(
−2

(
µ+

δβγ2 − δα2

γ3

))
Thus, when

µ+
δβγ2 − δα2

γ3
> 0,

this limit is strictly smaller than 1 and we can find n0 ∈ N∗ and C < 1 such
that (2.11) is satisfied. Taking β = 0 and σ2 = δ/α we retrieve the condition
for normal returns given in Example 2.3.2.

Proof of Theorem 2.3.1. We have, for all n ∈ N∗ and T > 0,

P(τn(y) <∞) ≥ P(τn(y) ≤ T )
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and, by Theorem 2.2.3,

lim inf
n→∞

P(τn(y) <∞) ≥ P(τ(y) ≤ T ).

So, letting T →∞,

lim inf
n→∞

P(τn(y) <∞) ≥ P(τ(y) <∞).

Now if P(τ(y) < ∞) = 1, which is equivalent to µξ ≤ 0 by [Paulsen, 1998],
there is nothing else to prove. So we assume that P(τ(y) < ∞) < 1, or
µξ > 0, and we will prove that

lim sup
n→∞

P(τn(y) <∞) ≤ P(τ(y) <∞),

under the additional condition (2.11).

Fix y > ε > 0, T > 0 and, when τn(y) > T , denote by K
(n)
ε,T the event

K
(n)
ε,T =

{∣∣∣∣∣
∫ τn(y)

T+

e−R
(n)
s− dX(n)

s

∣∣∣∣∣ < ε

}
.

We have,

{τn(y) <∞} = {τn(y) ≤ T} ∪ {τn(y) ∈ (T,∞), K
(n)
ε,T }

∪ {τn(y) ∈ (T,∞), (K
(n)
ε,T ){}.

But, on the event {τn(y) ∈ (T,∞), K
(n)
ε,T },∫ T

0+

e−R
(n)
s− dX(n)

s +

∫ τn(y)

T+

e−R
(n)
s− dX(n)

s < −y

which implies ∫ T

0+

e−R
(n)
s− dX(n)

s < −y + ε,

or equivalently that τn(y − ε) ≤ T , by (2.7). Thus,

{τn(y) ≤ T} ∪ {τn(y) ∈ (T,∞), K
(n)
ε,T } ⊆ {τ

n(y − ε) ≤ T}.
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Then, we have {τn(y) ∈ (T,∞), (K
(n)
ε,T ){} ⊆ (K

(n)
ε,T ){ and thus

lim sup
n→∞

P(τn(y) <∞) ≤ P(τ(y − ε) ≤ T ) + lim sup
n→∞

P
(

(K
(n)
ε,T ){

)
.

So, we need to show that

lim
T→∞

lim sup
n→∞

P
(

(K
(n)
ε,T ){

)
= 0.

Using the decomposition (2.9), we obtain

(K
(n)
ε,T ){ ⊆

{∣∣∣∣∣
∫ τn(y)

T+

e−R
(n)
s− dA(n)

s

∣∣∣∣∣ ≥ ε

2

}
∪

{∣∣∣∣∣
∫ τn(y)

T+

e−R
(n)
s− dN (n)

s

∣∣∣∣∣ ≥ ε

2

}

Denote by E
(n)
1,T and E

(n)
2,T the sets on the r.h.s. of the above equation.

When n ≥ n0, we obtain, recalling the explicit form of the integral and using
Markov’s inequality,

P(E
(n)
1,T ) ≤ 2|µξ|

nε
E

[nτn(y)]+1∑
i=[nT ]+1

e−
∑i
j=1 γ

(n)
j


≤ 2|µξ|

nε
E

 ∞∑
i=[nT ]+1

i∏
j=1

e−γ
(n)
j

 =
2|µξ|
nε

∞∑
i=[nT ]+1

E
(
e−γ

(n)
1

)i
=

2|µξ|
nε

E
(
e−γ

(n)
1

)[nT ]
∞∑
j=1

E
(
e−γ

(n)
1

)j
.

But, since E(e−γ
(n)
1 ) ≤ E(e−2γ

(n)
1 )1/2 ≤ C1/(2n) < 1, we have

P(E
(n)
1,T ) ≤ 2|µξ|

ε

C1/(2n)

n(1− C1/(2n))
CT .

Moreover it is easy to see that C−1/(2n)(n(1 − C−1/(2n)))−1 → −2/ ln(C) as

n→∞, and so limT→∞ lim supn→∞P(E
(n)
1,T ) = 0.
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On the other hand, using the Chebyshev and Burkholder-Davis-Gundy in-
equalities, we obtain

P(E
(n)
2,T ) ≤ 4

ε2
E

∣∣∣∣∣
∫ τn(y)

T+

e−R
(n)
s− dN (n)

s

∣∣∣∣∣
2


≤ 4

ε2
E

(
sup

T<t<∞

∣∣∣∣∫ t

T+

e−R
(n)
s− dN (n)

s

∣∣∣∣2
)

≤ 4K

ε2
E

(∫ ∞
T+

e−2R
(n)
s− d[N (n), N (n)]s

)
,

where K is a constant. But,

[N (n), N (n)]t =
∑

0<s≤t

(∆N (n)
s )2 =

[nt]∑
i=1

(
ξi − µξ√

n

)2

.

Thus, writing the stochastic integral explicitly and using the same computa-
tion as before, we obtain

P(E
(n)
2,T ) ≤ 4K

ε2
E

 ∞∑
i=[nT ]+1

(
ξi − µξ√

n

)2

e−2
∑i
j=1 γ

(n)
j


=

4Kσ2
ξ

ε2n

∞∑
i=[nT ]+1

E(e−2γ
(n)
1 )i ≤ 4K

ε2
CTσ2

ξ

C1/n

n(1− C1/n)
.

Again, using the fact that the expression on the r.h.s. above converges, when
n→∞, we find that

lim
T→∞

lim sup
n→∞

P
(
E

(n)
2,T

)
= 0

and
lim sup
n→∞

P(τn(y) <∞) ≤ P(τ(y − ε) <∞).

So, letting ε→ 0 and using the continuity of y 7→ P(τ(y) <∞), we obtain

lim sup
n→∞

P(τn(y) <∞) ≤ P(τ(y) <∞).

The explicit expression for the ultimate ruin probability of the limiting pro-
cess is given in [Paulsen and Gjessing, 1997].
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2.4 Approximation of the Moments

In this section, we obtain a recursive formula for the moments of the limiting
process Y at a fixed time which, for simplicity, we choose to be T = 1 and
prove the convergence of the moments of θ

(n)
1 to the moments of Y1. This

gives a way to approximate the moments of θ
(n)
1 .

Proposition 2.4.1. Assume that the limiting process Y = (Yt)t≥0 is given
by (2.2) with Xt = µξt+ σξW̃t and Rt = µρt+ σρWt, for all t ≥ 0. We have,
for all p ∈ N,

E

(
sup

0≤t≤1
|Yt|p

)
<∞. (2.13)

Moreover, letting mp(t) = E[(Yt)
p], for each 0 ≤ t ≤ 1 and p ∈ N, we have

the following recursive formula: m0(t) = 1,

m1(t) =

{
yekρt +

µξ
κρ

(eκρt − 1) when κρ 6= 0,

y + µξt when κρ = 0,
(2.14)

with κρ = µρ + σ2
ρ/2 and, for each p ≥ 2,

mp(t) = ypeapt +

∫ t

0

eap(t−s) (bpmp−1(s) + cpmp−2(s)) ds, (2.15)

with ap = pµρ + p2σ2
ρ/2, bp = pµξ and cp = p(p− 1)σ2

ξ/2.

Proof. The existence of the moments (2.13) follows, for p ≥ 2, from the gen-
eral existence result for the strong solutions of SDEs, see e.g. Corollary 2.2.1
p.119 in [Nualart, 2006] and, for p = 1, from Cauchy-Schwarz’s inequality.

Set mp(t) = E[(Yt)
p], for all 0 ≤ t ≤ 1 and p ∈ N∗. Suppose that p ≥ 2. For

r ∈ N∗, define the stopping times

θr = inf {t > 0 : |Yt| > r}

with inf ∅ = +∞. Then, applying Itô’s lemma and using 〈Y, Y 〉t = σ2
ξ t +
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σ2
ρ

∫ t
0
Y 2
s ds, yields

(Yt∧θr)
p = yp + pµξ

∫ t∧θr

0

(Ys)
p−1ds+ pσξ

∫ t∧θr

0

(Ys)
p−1dW̃s

+ pκρ

∫ t∧θr

0

(Ys)
pds+ pσρ

∫ t∧θr

0

(Ys)
pdWs

+
p(p− 1)

2
σ2
ξ

∫ t∧θr

0

(Ys)
p−2ds

+
p(p− 1)

2
σ2
ρ

∫ t∧θr

0

(Ys)
pds.

Thus, using Fubini’s theorem and the fact that the stochastic integrals are
martingales, we obtain

E[(Yt∧θr)
p] = yp + pµξ

∫ t∧θr

0

E[(Ys)
p−1]ds+ pκρ

∫ t∧θr

0

E[(Ys)
p]ds

+
p(p− 1)

2
σ2
ξ

∫ t∧θr

0

E[(Ys)
p−2]ds

+
p(p− 1)

2
σ2
ρ

∫ t∧θr

0

E[(Ys)
p]ds.

Now we can take the limit as r → ∞, and use (2.13) to pass it inside the
expectation of the l.h.s. of the above equation. Differentiating w.r.t. t, we
then obtain the following ODE

d

dt
E[(Yt)

p] =

(
pκρ +

p(p− 1)

2
σ2
ρ

)
E[(Yt)

p] + pµξE[(Yt)
p−1]

+
p(p− 1)

2
σ2
ξE[(Yt)

p−2],

and E[(Y0)p] = yp. This is an inhomogeneous linear equation of the first
order which can be solved explicitly to obtain (2.15).

For p = 1, using the same technique as above, we obtain

E(Yt) = y + µξt+ κρ

∫ t

0

E(Ys)ds.
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If κρ = 0, there is nothing to prove. If κρ 6= 0, we obtain by differentiating
w.r.t. t,

d

dt
E(Yt) = µξ + κρE(Yt),

with E(Y0) = y and this can be solved to obtain (2.14).

We now state the approximation result.

Theorem 2.4.2. Assume that (H′) holds. Assume that E(|ξ1|q) < ∞, and
that

sup
n∈N∗

E
(
eqγ

(n)
1

)n
= sup

n∈N∗
E
(

(ρ
(n)
1 )q

)n
<∞, (2.16)

for some integer q ≥ 2. Then, for each p ∈ N∗ such that 1 ≤ p < q, we have

lim
n→∞

E[(θ
(n)
1 )p] = E[(Y1)p] = mp(1),

for the function mp defined in Proposition 2.4.1.

Before turning to the proof of the theorem, we give an example to illustrate
Condition (2.16).

Example 2.4.3 (Approximation of the moments with NIG log-returns).
Take ln(ρ1) to be a normal inverse gaussian NIG(α, β, δ, µ) random variable
with 0 ≤ |β| < α, δ > 0 and µ ∈ R (recall Example 2.2.6 for the definition).
Fix q ≥ 2. When n is large enough, we can use Taylor’s formula, to obtain√

α2 −
(
β +

q√
n

)2

= γ − q√
n

β

γ
− q2

2n

α2

[α2 − (β + xn)2]3/2
,

for some xn ∈ [0, q/
√
n] and thus

lim
n→∞

E
(
eqγ

(n)
1

)n
= exp

(
qµρ +

qδα2

2γ3

)
.

Since this limit exists and is finite for each q ≥ 2, the sequence is bounded
and the convergence of the moments depends only on the highest moment
of ξ1. Note that the NIG distribution contains the standard Gaussian as a
particular case.
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Proof of Theorem 2.4.2. Since by Corollary 2.2.5, we know that θ
(n)
1

d→ Y1,

we have also (θ
(n)
1 )p

d→ (Y1)p, as n→∞, for 1 ≤ p < q. It is thus enough to

show that the sequence ((θ
(n)
1 )p)n∈N∗ is uniformly integrable, which by de la

Vallée-Poussin’s criterion is implied by the condition supn∈N∗ E(|θ(n)
1 |q) <∞.

Define R̃
(n)
t = R

(n)
1 −R

(n)
1−t and X̃

(n)
t = X

(n)
1 −X

(n)
1−t the time-reversed processes

of R(n) and X(n) which are defined for t ∈ [0, 1]. It is possible to check that

(R̃
(n)
t )0≤t≤1

d
= (R

(n)
t )0≤t≤1 and (X̃

(n)
t )0≤t≤1

d
= (X

(n)
t )0≤t≤1 by checking that the

characteristics of these processes are equal (since [n]−[n(1−t)]−1 = ceil(nt)−
1 = [nt], where ceil is the ceiling function), and by applying Theorem II.4.25
p.110 in [Jacod and Shiryaev, 2003]. (See also the example on p.97 in [Jacod
and Shiryaev, 2003] for the computation of the characteristics.) Thus, we
can imitate the proof of Theorem 3.1. in [Carmona et al., 2001] to obtain

θ
(n)
1 = eR

(n)
1 y +

∫ 1

0+

eR
(n)
1 −R

(n)
s− dX(n)

s
d
= eR̃

(n)
1 y +

∫ 1

0+

eR̃
(n)
u−dX̃(n)

u

d
= eR

(n)
1 y +

∫ 1

0+

eR
(n)
u−dX(n)

u .

Then, using the fact that |a+ b|q ≤ 2q−1(|a|q + |b|q), we obtain

E
(
|θ(n)

1 |q
)
≤ 2q−1

[
yqE

(
eqR

(n)
1

)
+ E

(∣∣∣∣∫ 1

0+

eR
(n)
u−dX(n)

u

∣∣∣∣q)] .
Denote by I

(n)
1 and I

(n)
2 the expectation appearing on the r.h.s. of the above

inequality. We will treat each expectation separately.

For I
(n)
1 we simply have

sup
n∈N∗

I
(n)
1 = sup

n∈N∗

n∏
i=1

E(eqγ
(n)
i ) = sup

n∈N∗
E
(
eqγ

(n)
1

)n
<∞. (2.17)

For I
(n)
2 , we start by defining M

(n)
t =

∑[nt]
i=1

ln(ρi)−µρ√
n

, for 0 ≤ t ≤ 1. It is

possible to check that (M
(n)
t )0≤t≤1 is a martingale, for each n ∈ N∗ (for the

filtration defined above Theorem 2.2.1.) In fact, the martingale property is
checked in the same manner as for X(n) in the proof of Theorem 2.2.1 and
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the integrability is clear. Thus, (eM
(n)
t )0≤t≤1 is a submartingale, and using

Doob’s inequality we obtain

E

(∣∣∣∣ sup
0≤t≤1

eR
(n)
t

∣∣∣∣q) =

(
sup

0≤t≤1
eqµρ

[nt]
n

)
E

(∣∣∣∣ sup
0≤t≤1

eM
(n)
t

∣∣∣∣q)
≤ max(1, eµρq)

(
q

q − 1

)q
E(eqM

(n)
1 )

= max(1, e−µρq)

(
q

q − 1

)q
E(eqR

(n)
1 ).

And so the assumption (2.16) together with (2.17) imply that

sup
n∈N∗

E

(∣∣∣∣ sup
0≤t≤1

eR
(n)
t

∣∣∣∣q) <∞. (2.18)

Writing X
(n)
t = A

(n)
t + N

(n)
t , with the processes defined in the proof of The-

orem 2.2.1 and using the fact that |A(n)
t | ≤ |µξ|t, for all t ≥ 0, we have

I
(n)
2 ≤ 2q−1

[
E

(∣∣∣∣∫ 1

0+

eR
(n)
s− dA(n)

s

∣∣∣∣q)+ E

(∣∣∣∣∫ 1

0+

eR
(n)
s− dN (n)

s

∣∣∣∣q)]
≤ 2q−1|µξ|qE

(∣∣∣∣ sup
0≤t≤1

eR
(n)
1

∣∣∣∣q)+ 2q−1E

(∣∣∣∣∫ 1

0+

eR
(n)
s− dN (n)

s

∣∣∣∣q) .
But, from the Burkholder-Davis-Gundy inequality applied twice and the in-
dependence of the sequences, we obtain

E

(∣∣∣∣∫ 1

0+

eR
(n)
s− dN (n)

s

∣∣∣∣q) ≤ DqE

(∣∣∣∣∫ 1

0+

e2R
(n)
s− d[N (n)]s

∣∣∣∣q/2
)

≤ DqE

(
sup

0≤t≤1
eqR

(n)
1

)
E([N (n)]

q/2
1 )

≤ dqDqE

(∣∣∣∣ sup
0≤t≤1

eR
(n)
1

∣∣∣∣q)E(|N (n)
1 |q)

for some positive constants Dq and dq. Thus,

sup
n∈N∗

I
(n)
2 ≤ 2q−1|µξ| sup

n∈N∗
E

(∣∣∣∣ sup
0≤t≤1

eR
(n)
t

∣∣∣∣q)
+ 2q−1dqDq sup

n∈N∗
E

(∣∣∣∣ sup
0≤t≤1

eR
(n)
t

∣∣∣∣q) sup
n∈N∗

E
(
|N (n)

1 |q
)
,
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and so (2.18) implies that it is enough to check that supn∈N∗ E(|N (n)
1 |q) is

finite. (Note that a similar argument to the one used to prove the finiteness

of I
(n)
2 is used in a different context in the proof of Lemma 5.1 in [Bankovsky

et al., 2011].)

Using the multinomial theorem, we obtain

E(|N (n)
1 |q) =

∑
k1+···+kn=q

(
q

k1, . . . , kn

) n∏
i=1

E

((
ξ1 − µξ√

n

)ki)
,

where the sum is taken over all non-negative integer solutions of k1+· · ·+kn =
q. Since E((ξ1 − µξ)

ki) = 0, when ki = 1, we can sum over the partitions
with ki 6= 1 for all i = 1, . . . , n. Now, since ki/q ≤ 1, we have by Jensen’s
inequality

n∏
i=1

E

((
ξ1 − µξ√

n

)ki)
≤

n∏
i=1

E

(∣∣∣∣ξ1 − µξ√
n

∣∣∣∣q)
ki
q

= n−q/2E(|ξ1 − µξ|q).

Thus,

I
(n)
3 ≤ 2q−1E(|ξ1 − µξ|q)n−q/2

∑
k1+···+kn=q,ki 6=1

(
q

k1, . . . , kn

)
.

and since we need to take the supremum over n ∈ N∗, we need to check that
the r.h.s. of the above inequality is bounded in n. For this, note that the
sum of multinomial coefficients is equal to

[q/2]∑
i=1

(
n

i

) ∑
l1+···+li=q−2i

(
q

l1 + 2, . . . , li + 2

)
, (2.19)

where, for each i = 1, . . . , [q/2], the second sum is taken over all non-negative
integer solutions of l1 + · · · + li = q − 2i. This follows from the fact that if
(k1, . . . , kn) are non-negative integer solutions of k1 + · · ·+ kn = q, we have,
since ki 6= 1, that the number of non-zero terms in (k1, . . . , kn) is at most
[q/2]. Thus, letting i be the number of non-zero terms and (j1, . . . , ji) their
indices, we find that (kj1 − 2) + · · · + (kji − 2) = q − 2i, which yields the
claimed equality. Then, we have(

q

l1 + 2, . . . , li + 2

)
≤ Ci

(
q − 2i

l1, . . . , li

)
,
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with Ci = 2−iq!/(q − 2i)! and∑
l1+···+li=q−2i

(
q − 2i

l1, . . . , li

)
= iq−2i.

Let Cq = maxi=1,...,[q/2]Ci and Kq = 2q−1CqE(|ξ1 − µξ|q), remark that the
binomial coefficient in (2.19) is bounded by n[q/2] and that

I
(n)
3 ≤ Kqn

−q/2
[q/2]∑
i=1

(
n

i

)
iq−2i ≤ Kqn

−q/2+[q/2]

[q/2]∑
i=1

iq−2i,

which is bounded in n. Thus, supn∈N∗ I
(n)
3 <∞, supn∈N∗ I

(n)
2 <∞ and

sup
n∈N∗

E
(
|θ(n)

1 |q
)
≤ 2q−1yq sup

n∈N∗
I

(n)
1 + 2q−1 sup

n∈N∗
I

(n)
2 <∞.

So, the sequence ((θ
(n)
1 )p)n∈N∗ is uniformly integrable and we have limn→∞

E[(θ
(n)
1 )p] = E[(Y1)p].
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Chapter 3

On the Ruin Problem for GOU
Processes

In this chapter1, we study the ruin problem for the GOU process in a gen-
eral framework where the investment process R is a semimartingale. After
introducing our assumptions, we recall some related results in Section 3.1.
In Section 3.2 we obtain upper bounds on the finite and infinite time ruin
probabilities and, in Section 3.3, lower bounds for these quantities as well
as the logarithmic asymptotic for them. The results of these sections de-
pends on the computation of some quantity for which we give an explicit
method when R is a Lévy process, in Section 3.4. Finally, in Section 3.5,
we give sufficient conditions on R for ruin with probability one and, in the
Lévy case, show that they correspond to the known condition based on the
characteristic triplet of R.

Classically, the value of an insurance company with initial capital y > 0
and investing in a financial market, denoted by Y = (Yt)t≥0, is given as the
solution of the following linear stochastic differential equation

Yt = y +Xt +

∫ t

0+

Ys−dRs, t ≥ 0, (3.1)

where X = (Xt)t≥0 and R = (Rt)t≥0 are two independent stochastic processes

1This chapter is based on the joint work done with Lioudmila Vostrikova for the paper
[Spielmann and Vostrikova, 2019] which is accepted for publication in Theory of Probability
and its Applications.
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defined on some probability space (Ω,F ,P) and chosen so that (3.1) makes
sense. The process X then represents the profit and loss of the business
activity and R represents the return of the investment. The ruin problem in
this general setting was first studied in [Paulsen, 1993].

In this chapter, we assume again that the processes X = (Xt)t≥0 and R =
(Rt)t≥0 are independent and such that X is a Lévy process and R is a semi-
martingale. We suppose also that the jumps of R denoted ∆Rt = Rt − Rt−
are strictly bigger than −1, for all t > 0. In this case, from Proposition
1.3.3, we have [X,R]t = 0, for all t ≥ 0, and that the equation (3.1) admits
a unique strong solution given by

Yt = E(R)t

(
y +

∫ t

0+

dXs

E(R)s−

)
, t ≥ 0 (3.2)

where E(R) is Doléans-Dade’s exponential. Moreover, since ∆Rt > −1, for
all t ≥ 0 implies that E(R)t > 0, for all t ≥ 0, we obtain

P

(
sup

0≤t≤T

(
−
∫ t

0+

dXs

E(R)s−

)
> y

)
≤ P(τ(y) ≤ T )

≤ P

(
sup

0≤t≤T

(
−
∫ t

0+

dXs

E(R)s−

)
≥ y

)
.

(3.3)

Thus, the ruin problem for the GOU is strongly related to the first passage
time of −

∫ .
0+

dXs
E(R)s−

.

In fact, we will show in this chapter that the behaviour of the first passage
time of this stochastic integral depends strongly on the behaviour of the
exponential functional of R at T , i.e. on the behaviour of

IT =

∫ T

0

e−R̂sds and JT (α) =

∫ T

0

e−αR̂sds

where α > 0 and R̂t = ln E(R)t, for all t ≥ 0, is the exponential transform of
R or on the exponential functional of R,

I∞ =

∫ ∞
0

e−R̂sds and J∞(α) =

∫ ∞
0

e−αR̂sds.

For convenience, we let JT = JT (2) and J∞ = J∞(2).

76
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In the following, we denote the generating triplet of the Lévy process X by
(aX , σ

2
X , KX) where aX ∈ R, σX ≥ 0 and KX is a Lévy measure. We recall

that, using the Lévy-Itô decomposition, the process X can then be written
in the form

Xt = aXt+ σXWt +

∫ t

0+

∫
{|x|≤1}

x(µX(ds, dx)−KX(dx)ds)

+

∫ t

0+

∫
{|x|>1}

xµX(ds, dx),

(3.4)

where µX is the jump measure of X, W is standard Brownian Motion and
the processes appearing in this decomposition are independent. We recall
also that R = (Rt)t≥0 can similarly be defined by its semimartingale decom-
position

Rt = Bt +Rc
t +

∫ t

0+

∫
{|x|≤1}

x(µR(ds, dx)− νR(ds, dx))

+

∫ t

0+

∫
{|x|>1}

xµR(ds, dx),

(3.5)

where B = (Bt)t≥0 is a drift part, Rc = (Rc
t)t≥0 is the continuous martingale

part of R, µR is the jump measure of R and νR is its compensator.

3.1 Related Results

The ruin problem for the GOU process is well studied, since, as we men-
tioned in the introduction, these processes are used to model the surplus
process of an insurance company facing both insurance and market risks.
Thus, before describing our our results, we give a brief review of the related
literature.

The special case when Rt = rt, with r > 0, for all t ≥ 0 (non-risky invest-
ment) is well known and we refer to [Paulsen, 2008] and references therein
for the main results. In brief, in that case and under some additional con-
ditions, the ruin probability decreases even faster than an exponential since
the capital of the insurance company is constantly increasing.
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The case of risky investment is also well-studied. In that case, it is assumed
in general that X and R are independent Lévy processes. The first results in
this setting appear in [Kalashnikov and Norberg, 2002] (and later in [Yuen
et al., 2004]) where it was shown that under some conditions there exists
C > 0 and y0 ≥ 0 such that for all y ≥ y0 and for some b > 0

P(τ(y) <∞) ≥ Cy−b.

Qualitatively, this means that the ruin probability cannot decrease faster as a
power function, i.e. the de-growth is much slower than in the no-investment
case. Later, under some conditions on the Lévy triplets of X and R, it was
shown in [Paulsen, 2002] that for some β > 0 and ε > 0, there exists C > 0
such that, as y →∞,

yβ P(τ(y) <∞) = C + o(y−ε).

In [Kabanov and Pergamentshchikov, 2016], it was proven, under different
assumptions on the Lévy triplets and when X has no negative jumps, that
there exists C > 0 such that for the above β > 0

lim
y→∞

yβ P(τ(y) <∞) = C.

Results concerning bounds on P(τ(y) < +∞) are given in [Kalashnikov and
Norberg, 2002] where it is shown that, for all ε > 0, there exists C > 0 such
that for all y ≥ 0 and the same β > 0

P(τ(y) <∞) ≤ Cy−β+ε.

In less general settings similar results are available. The case when X is
a compound Poisson process with drift and exponential jumps and R is a
Brownian motion with drift is studied in [Frolova et al., 2002] (negative
jumps only) and in [Kabanov and Pergamentshchikov, 2018] (positive jumps
only). In [Pergamentshchikov and Zeitouny, 2006] the model with negative
jumps is generalized to the case where the drift of X is a bounded stochastic
process.

Some exact results for the ultimate ruin probability are available in specific
models (see e.g. [Paulsen, 2008] and [Yuen et al., 2004]) and conditions
for ruin with probability one are given, for different levels of generality, in
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[Frolova et al., 2002], [Kabanov and Pergamentshchikov, 2016], [Kabanov
and Pergamentshchikov, 2018], [Kalashnikov and Norberg, 2002], [Paulsen,
1998] and [Pergamentshchikov and Zeitouny, 2006].

We see also that in the mentioned reference the focus was on the case when
R is a Lévy process. We believe that, even if the results of the last chapter
suggest a model where R is a Lévy process, the return on investment cannot
be modelled in general by a homogeneous process. Indeed, the market con-
ditions can change over time or switch between different states. Up to our
knowledge, the only paper that focuses also on a semimartingale market is
[Hult and Lindskog, 2011] where the asymptotic as y →∞ of the finite time
ruin probability are studied when X has regularly varying tails and R is a
semimartingale satisfying some conditions.

We see that these results are concerned mainly with the ultimate ruin proba-
bility or its asymptotic when y →∞. We believe that both these restrictions
invite criticism. The first one by noting that, from a practical point of view,
one is interested in the possibility of ruin before a certain time, e.g. before
reaching retirement, and not in the possibility of ultimate ruin. The focus
on the asymptotic when y → ∞ means that it is assumed that the insur-
ance company has a very large capital, which is not the usual situation when
focusing on the possibility of ruin. That is why in addition to letting R be
a semimartingale we focus, in this chapter, on inequalities for P(τ(y) ≤ T )
which hold for every y > 0 and we will see that this allows us to recover some
known results on the ultimate probability of ruin and on its asymptotic.

3.2 Upper Bound for the Ruin Probabilities

Define
βT = sup

{
β ≥ 0 : E(J

β/2
T ) <∞,E(JT (β)) <∞

}
.

The main result of this section is the following.

Theorem 3.2.1. Let T > 0. Assume that βT > 0 and that, for some
0 < α < βT , we have∫

{|x|>1}
|x|αKX(dx) <∞ (or equivalently E(|X1|α) <∞). (3.6)
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Then, for all y > 0,

P(τ(y) ≤ T ) ≤ C1E(IαT ) + C2E(J
α/2
T ) + C3E(JT (α))

yα
, (3.7)

where the expectations on the right hand side are finite and C1 ≥ 0, C2 ≥ 0,
and C3 ≥ 0 are constants that depend only on α in an explicit way. Moreover,
if (3.6) holds for all 0 < α < βT , then

lim sup
y→∞

ln (P(τ(y) ≤ T ))

ln(y)
≤ −βT . (3.8)

This theorem is, up to our knowledge, the first result establishing an upper
bound, when R is not deterministic, for the ruin probability before a finite
time even in the case when R is a Lévy process. The theorem indicates
that, when βT = ∞, under the mentioned conditions, the ruin probability
decreases faster than any power function and that, when βT < ∞, the ruin
probability decreases at least as a power function as y →∞.

As a corollary, we can obtain a similar result for the ultimate ruin probability.
Let

β∞ = sup
{
β ≥ 0 : E(Iβ∞) <∞,E(Jβ/2∞ ) <∞,E(J∞(β)) <∞

}
.

Since (It)t≥0, (Jt)t≥0 and (Jt(α))t≥0 are increasing we obtain the following by
letting T →∞ and using the monotone convergence theorem with the upper
bound of Theorem 3.2.1.

Corollary 3.2.2. Assume that β∞ > 0 and that the condition (3.6) holds
for some 0 < α < β∞, then

P(τ(y) <∞) ≤ C1E(Iα∞) + C2E(J
α/2
∞ ) + C3E(J∞(α))

yα
,

where C1 ≥ 0, C2 ≥ 0, and C3 ≥ 0 are constants that depend only on α in
an explicit way. Moreover, if (3.6) holds for all 0 < α < β∞, then

lim sup
y→∞

ln (P(τ(y) <∞))

ln(y)
≤ −β∞.
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Before giving the proof of Theorem 3.2.1, we now state some preliminary
results. The following lemma proves that the expectation on the r.h.s. of
(3.7) are indeed finite.

Lemma 3.2.3. For all T > 0, we have the following.

(a) If 0 < α < 2, E(J
α/2
T ) <∞ implies E(IαT ) <∞ and E(JT (α)) <∞.

(b) If α ≥ 2, E(JT (α)) <∞ implies E(IαT ) <∞ and E(J
α/2
T ) <∞.

Proof. First note that by the Cauchy-Schwarz inequality we obtain, for all
T > 0,

IT =

∫ T

0

E(R)−1
s ds ≤

√
T

(∫ T

0

E(R)−2
s ds

)1/2

=
√
T
√
JT .

So, E(IαT ) ≤ Tα/2E(J
α/2
T ), for all α > 0.

Now, if 0 < α < 2, we have 2
α
> 1 and by Hölder’s inequality

JT (α) =

∫ T

0

E(R)−αs ds ≤ T (2−α)/2

(∫ T

0

E(R)−2
s ds

)α/2
= T (2−α)/2J

α/2
T .

These inequalities yield (a).

Now, if α ≥ 2, we have either α = 2 which yields the desired result or α > 2.
In that case, we have α

2
> 1 and, by Hölder’s inequality, we obtain

JT =

∫ T

0

E(R)−2
s ds ≤ T (α−2)/α

(∫ T

0

E(R)−αs ds

)2/α

= T (α−2)/αJT (α)2/α.

So, E(J
α/2
T ) ≤ T (α−2)/2E(JT (α)), which yields (b).

The main ingredient for the proof of Theorem 3.2.1 will the following de-
composition of the stochastic integral process into different parts using the
Lévy-Itô decomposition. Denote by Md = (Md

t )t≥0 the local martingale de-
fined as:

Md
t =

∫ t

0+

∫
{|x|≤1}

x

E(R)s−
(µX(ds, dx)−KX(dx)ds)
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and by U = (Ut)t≥0 the process given by

Ut =

∫ t

0+

∫
{|x|>1}

x

E(R)s−
µX(ds, dx).

If
∫
{|x|>1} |x|KX(dx) < ∞, we can also define the local martingale Nd =

(Nd
t )t≥0 as

Nd
t =

∫ t

0+

∫
R

x

E(R)s−
(µX(ds, dx)−KX(dx)ds).

Proposition 3.2.4. We have the following identity in law:(∫ t

0+

dXs

E(R)s−

)
t≥0

d
=
(
aXIt + σXWJt +Md

t + Ut
)
t≥0

.

Moreover, if
∫
{|x|>1} |x|KX(dx) <∞ (or equivalently E(|X1|) <∞), then,(∫ t

0+

dXs

E(R)s−

)
t≥0

d
=
(
δXIt + σXWJt +Nd

t

)
t≥0

,

where δX = E(X1) = aX +
∫
{|x|>1} xKX(dx).

Proof. We show first that

L

((∫ t

0+

dXs

E(R)s−

)
t≥0

| E(R)s = qs, s ≥ 0

)
= L

((∫ t

0+

dXs

qs−

)
t≥0

)
To prove this equality in law we consider the representation of the stochas-
tic integrals by Riemann sums (see [Jacod and Shiryaev, 2003], Proposition
I.4.44, p. 51). We recall that for any increasing sequence of stopping times
τ = (Tn)n∈N with T0 = 0 such that supn Tn = ∞ and Tn < Tn+1 on the set
{Tn < ∞}, the Riemann approximation of the stochastic integral

∫ t
0

dXs
E(R)s−

will be

τ

(∫ t

0+

dXs

E(R)s−

)
=
∞∑
n=0

1

E(R)Tn−

(
XTn+1∧t −XTn∧t

)
The sequence τn = (T (n,m))m∈N of adapted subdivisions is called Riemann
sequence if supm∈N(T (n,m + 1) ∧ t − T (n,m) ∧ t) → 0 as n → ∞ for all
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t > 0. For our purposes we will take a deterministic Riemann sequence.
Then, Proposition I.4.44, p.51 of [Jacod and Shiryaev, 2003] says that for all
t > 0

τn

(∫ t

0+

dXs

E(R)s−

)
P−→
∫ t

0+

dXs

E(R)s−
(3.9)

and

τn

(∫ t

0+

dXs

qs−

)
P−→
∫ t

0+

dXs

qs−
(3.10)

where
P−→ denotes the convergence in probability. According to the Kol-

mogorov theorem, the law of the process is entirely defined by its finite-
dimensional distributions. Let us take for k ≥ 0 a subdivision t0 = 0 < t1 <
t2 · · · < tk and a continuous bounded function F : Rk → R, to prove by
standard arguments that

E

[
F

(
τn

(∫ t1

0+

dXs

E(R)s−

)
, · · · τn

(∫ tk

0+

dXs

E(R)s−

))
| E(R)s = qs, s ≥ 0

]

= E

[
F

(
τn

(∫ t1

0+

dXs

qs−

)
, · · · τn

(∫ tk

0+

dXs

qs−

))]
Taking into account (3.9) and (3.10), we pass to the limit as n→∞ and we
obtain

E

[
F

(∫ t1

0+

dXs

E(R)s−
, · · ·

∫ tk

0+

dXs

E(R)s−

)
| E(R)s = qs, s ≥ 0

]

= E

[
F

(∫ t1

0+

dXs

qs−
, · · ·

∫ tk

0+

dXs

qs−

)]
and this proves the claim.

Using the decomposition (3.4) we get that∫ t

0+

dXs

qs−
= aX

∫ t

0

ds

qs
+ σX

∫ t

0+

dWs

qs−

+

∫ t

0+

∫
{|x|≤1}

x

qs−
(µX(ds, dx)−KX(dx)ds)

+

∫ t

0+

∫
{|x|>1}

x

qs−
µX(ds, dx).
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We denote the last two terms in the r.h.s. of the equality above by Md
t (q)

and Ut(q) respectively. Recall that since X is Lévy process the four processes
appearing in the right-hand side of the above equality are independent. We
use the well-known identity in law(∫ t

0+

dWs

qs−

)
t≥0

d
=

(
W∫ t

0
ds

q2s

)
t≥0

to write (
aX

∫ t

0

ds

qs
, σX

∫ t

0+

dWs

qs−
,Md

t (q), Ut(q)

)
t≥0

d
=

(
aX

∫ t

0

ds

qs
, σXW∫ t

0
ds

q2s

,Md
t (q), Ut(q)

)
t≥0

.

Then, we take the sum of these processes and we integrate w.r.t. the law of
E(R). This yields the first result.

The proof of the second part is the same except we take the following de-
composition of X:

Xt = δXt+ σXWt +

∫ t

0+

∫
R
x(µX(ds, dx)−KX(dx)ds).

Thus, the study of the stochastic integral can be reduced to the study of the
elements in the decomposition given in Proposition 3.2.4. To treat the com-
pensated integral term in this decomposition, we will use Novikov-Bichteler-
Jacod maximal inequalities (see [Novikov, 1975], [Bichteler and Jacod, 1983]
and also [Marinelli and Röckner, 2014]) which we will state below after in-
troducing some notations.

Let f : (ω, t, x) 7→ f(ω, t, x) be a left-continuous and measurable random
function on Ω×R+×R. Specializing the notations of [Novikov, 1975] to our
case, we say that f ∈ F2 if, for almost all ω ∈ Ω,∫ t

0

∫
R
f 2(ω, s, x)KX(dx)ds <∞.
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If f ∈ F2, we can define the compensated integral by

Cf (t) =

∫ t

0+

∫
R
f(ω, s, x) (µX(ds, dx)−KX(dx)ds)

for all t ≥ 0, as an usual stochastic integral and it is possible to show that the
definition coincides with the one given in Section 1.2.3 when f ∈ F2 satisfies
additionally the conditions in that section.

Proposition 3.2.5 (Novikov-Bichteler-Jacod inequalities, c.f. Theorem 1
in [Novikov, 1975]). Let f be a left-continuous measurable random function
with f ∈ F2. Let Cf = (Cf (t))t≥0 be the compensated integral of f as defined
above.

(a) For all 0 ≤ α ≤ 2,

E

(
sup

0≤t≤T
|Cf (t)|α

)
≤ K1E

[(∫ T

0

∫
R
f 2KX(dx)ds

)α/2]
.

(b) For all α ≥ 2,

E

(
sup

0≤t≤T
|Cf (t)|α

)
≤ K2E

[(∫ T

0

∫
R
|f |2KX(dx)ds

)α/2]

+K3E

(∫ T

0

∫
R
|f |αKX(dx)ds

)

where K1 ≥ 0, K2 ≥ 0, and K3 ≥ 0 are constants depending only on α in an
explicit way.

We are now ready for the proof of Theorem 3.2.1.

Proof of Theorem 3.2.1. Note that

sup
0≤t≤T

−(aXIt + σXWJt +Md
t + Ut)

≤ |aX |IT + sup
0≤t≤T

σX |WJt |+ sup
0≤t≤T

|Md
t |+ sup

0≤t≤T
|Ut|,
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and that for positive random variables Z1, Z2, Z3, Z4 we have

{Z1 + Z2 + Z3 + Z4 ≥ y}

⊆
{
Z1 ≥

y

4

}
∪
{
Z2 ≥

y

4

}
∪
{
Z3 ≥

y

4

}
∪
{
Z4 ≥

y

4

}
.

Therefore, using Equation (3.3) and Proposition 3.2.4, we obtain

P(τ(y) ≤ T ) ≤P

(
sup

0≤t≤T
−(aXIt + σXWJt +Md

t + Ut) ≥ y

)
≤P

(
|aX |IT ≥

y

4

)
+ P

(
sup

0≤t≤T
σX |WJt | ≥

y

4

)
+ P

(
sup

0≤t≤T
|Md

t | ≥
y

4

)
+ P

(
sup

0≤t≤T
|Ut| ≥

y

4

)
.

For the first term, using Markov’s inequality, we obtain

P
(
|aX |IT ≥

y

4

)
≤ 4α|aX |α

yα
E(IαT ).

For the second term, since (Jt)0≤t≤T is increasing we can change the time in
the supremum and condition on (E(R)t)0≤t≤T to obtain

P

(
sup

0≤t≤T
σX |WJt | ≥

y

4

)
= P

(
sup

0≤t≤JT
σX |Wt| ≥

y

4

)
= E

[
P

(
sup

0≤t≤JT
σX |Wt| ≥

y

4

∣∣∣∣ (E(R)t)0≤t≤T

)]
Since W and R are independent, we obtain, using the reflection principle,

the fact that W∫ T
0 q−2

t dt

d
=
(∫ T

0
q−2
t dt

)1/2

W1 and Markov’s inequality, that

P

(
sup

0≤t≤JT
σX |Wt| ≥

y

4

∣∣∣∣ E(R)t = qt, 0 ≤ t ≤ T

)
= 2P

((∫ T

0

q−2
t dt

)1/2

σX |W1| ≥
y

4

)

≤ 2
4ασαX
yα

(∫ T

0

q−2
t dt

)α/2
E(|W1|α).
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Then, since E(|W1|α) = 2α/2√
π

Γ
(
α+1

2

)
, we obtain

P

(
sup

0≤t≤T
σX |WJt | ≥

y

4

)
≤

2(5α+2)/2Γ
(
α+1

2

)
σαX√

πyα
E(J

α/2
T ).

Note that the inequalities for the first two terms work for all α > 0.

Suppose now that 0 < α ≤ 1. We see that E(R)−1
t−x1{|x|≤1} ∈ F2. Therefore,

using Markov’s inequality and part (a) of Proposition 3.2.5, we obtain

P

(
sup

0≤t≤T
|Md

t | ≥
y

4

)
≤ 4α

yα
E

(
sup

0≤t≤T
|Md

t |α
)

≤ K1
4α

yα
E

[(∫ T

0

∫
R

x2

E(R)2
s−

1{|x|≤1}KX(dx)ds

)α/2]

= K1
4α

yα

(∫
R
x21{|x|≤1}KX(dx)

)α/2
E(J

α/2
T ).

For the last term, note that since 0 < α ≤ 1, we have
(∑N

i=1 xi

)α
≤
∑N

i=1 x
α
i ,

for xi ≥ 0 and N ∈ N∗ and, for each t ≥ 0,

|Ut|α ≤

(∑
0<s≤t

E(R)−1
s−|∆Xs|1{|∆Xs|>1}

)α

≤
∑

0<s≤t

E(R)−αs− |∆Xs|α1{|∆Xs|>1}

=

∫ t

0+

∫
R
E(R)−αs− |x|α1{|x|>1}µX(ds, dx).

Therefore, using Markov’s inequality and the compensation formula, we ob-
tain

P

(
sup

0≤t≤T
|Ut| ≥

y

4

)
≤ 4α

yα
E

(
sup

0≤t≤T
|Ut|α

)
≤ 4α

yα
E

(
sup

0≤t≤T

∫ t

0+

∫
R
E(R)−αs− |x|α1{|x|>1}µX(ds, dx)

)
=

4α

yα
E

(∫ T

0

∫
R
E(R)−αs− |x|α1{|x|>1}KX(dx)ds

)
=

4α

yα

(∫
R
|x|α1{|x|>1}KX(dx)

)
E(JT (α)).
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This finishes the proof when 0 < α ≤ 1.

Suppose now that 1 < α ≤ 2. The bound for P
(
sup0≤t≤T |Md

t | ≥
y
4

)
can

be obtained in the same way as in the previous case. Applying Hölder’s
inequality we obtain

|Ut|α ≤
(∫ t

0+

∫
R
E(R)

−1/α
s− E(R)

1/α−1
s− |x|1{|x|>1}µX(ds, dx)

)α
≤
(∫ t

0+

∫
R
E(R)−1

s−|x|α1{|x|>1}µX(ds, dx)

)
×
(∫ t

0+

∫
R
E(R)−1

s−1{|x|>1}µX(ds, dx)

)α−1

≤
(∫ t

0+

∫
R
E(R)−1

s−|x|α1{|x|>1}µX(ds, dx)

)α
.

Then, using Markov’s inequality and the compensation formula, we obtain

P

(
sup

0≤t≤T
|Ut| ≥

y

4

)
≤ 4α

yα
E

(
sup

0≤t≤T
|Ut|α

)
=

(∫
R
|x|α1{|x|>1}KX(dx)

)α
E(IαT ).

This finishes the proof in the case 1 < α ≤ 2.

Finally, suppose that α ≥ 2. The estimation for P
(
sup0≤t≤T |Ut| ≥ y

4

)
still

works in this case. Moreover, since E(R)−1
t−x1{|x|≤1} ∈ F2, we obtain, applying

part (b) of Proposition 3.2.5 that

P

(
sup

0≤t≤T
|Md

t | ≥
y

4

)
≤K2E

[(∫ T

0

∫
R
E(R)−2

s−x
21{|x|≤1}KX(dx)ds

)α/2]

+K3E

(∫ T

0

∫
R
E(R)−αs− |x|α1{|x|≤1}KX(dx)ds

)
=K2

(∫
R
x21{|x|≤1}KX(dx)

)α/2
E(J

α/2
T )

+K3

(∫
R
|x|α1{|x|≤1}KX(dx)

)
E(JT (α)).

Note that the right-hand side is finite since |x|α1{|x|≤1} ≤ |x|21{|x|≤1} when
α ≥ 2. This finishes the proof of (3.7). Then we take ln from both sides
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of (3.7), we divide the inequality by ln(y) and we take limy→+∞, and, then
limα→βT to get (3.8).

3.3 Lower Bound and Logarithmic Asymp-

totic

The natural question is then whether the bound stated in Theorem 3.2.1 is
optimal. In this section, we partially answer this question by giving, under
some simple additional conditions on the Lévy triplet of X, a lower bound
for the ruin probability and, from this, deducing that the bound is at least
optimal for a large class of processes X when considering the logarithmic
asymptotic. The main result of this section is the following.

Theorem 3.3.1. Let T > 0. Assume that for γT ≥ 1 we have E(IγTT ) =∞.
Additionally, assume that∫

{|x|>1}
|x|KX(dx) <∞ (or equivalently that E(|X1|) <∞) (3.11)

and that

E(X1) = aX +

∫
{|x|>1}

xKX(dx) < 0 or σX > 0. (3.12)

Then, for all δ > 0, there exists a positive numerical sequence (yn)n∈N in-
creasing to ∞ such that, for all C > 0, there exists n0 ∈ N such that for all
n ≥ n0,

P(τ(yn) ≤ T ) ≥ C

yγTn ln(yn)1+δ
.

Moreover,

lim sup
y→∞

ln (P(τ(y) ≤ T ))

ln(y)
≥ −γT .

Thus, under the conditions of Theorems 3.2.1 and 3.3.1 with γT = βT , we
obtain immediately the logarithmic asymptotic for the ruin probability

lim sup
y→∞

ln (P(τ(y) ≤ T ))

ln(y)
= −βT .
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Concerning the lower bound for the ultimate ruin probability, we will prove
the following.

Corollary 3.3.2. Assume that E(I∞) <∞ and E(J∞) <∞ and that there

exists γ∞ > 1 such that E(Iγ∞∞ ) = ∞ and E(J
γ∞/2
∞ ) = ∞. Assume that X

verifies (3.11) and (3.12). Then,

lim sup
y→∞

ln (P(τ(y) <∞))

ln(y)
≥ −γ∞.

Again, under the assumptions of the Corollaries 3.2.2 and 3.3.2 with γ∞ = β∞
we can obtain the logarithmic asymptotic for the ultimate ruin probabil-
ity

lim sup
y→∞

ln (P(τ(y) <∞))

ln(y)
= −β∞.

We introduce the notation x+,p = (max(x, 0))p, for all x ∈ R and p > 0, and
give three simple preliminary results which will allow to reduce the problem
of finding a lower bound for the ruin probability to the problem of proving
that a certain expectation is infinite.

Lemma 3.3.3. Suppose that a random variable Z ≥ 0 (P − a.s.) satisfies
E(Zp) = ∞, for some p > 0. Then, for all δ > 0, there exists a positive
numerical sequence (yn)n∈N increasing to ∞ such that, for all C > 0, there
exists n0 ∈ N such that for all n ≥ n0,

P(Z > yn) ≥ C

ypn ln(yn)1+δ
.

Proof. If Z ≥ 0 (P−a.s.) is a random variable and g : R+ → R+ is a function
of class C1 with positive derivative, then, using Fubini’s theorem, we obtain

g(0) +

∫ ∞
0

g′(u)P(Z > u)du = g(0) + E

(∫ Z

0

g′(u)du

)
= E(g(Z)).

Applying this to the function g(z) = zp with p > 0 we obtain, for all y > 1,∫ ∞
y

up−1P(Z > u)du =∞.
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Moreover, for all δ > 0,

sup
u≥y

[up ln(u)1+δP(Z > u)]

∫ ∞
y

du

u ln(u)1+δ
≥
∫ ∞
y

up−1P(Z > u)du.

So, since
∫∞
y

du
u ln(u)1+δ

<∞, we obtain, for all y > 1,

sup
u≥y

[up ln(u)1+δP(Z > u)] =∞.

Therefore, there exists a numerical sequence (yn)n∈N increasing to ∞ such
that,

lim
n→∞

ypn ln(yn)1+δP(Z > yn) =∞.

Lemma 3.3.4. Assume that X and Y are independent random variables
with E(Y ) = 0. Assume that p ≥ 1. Then, E[X+,p] ≤ E[(X + Y )+,p].

Proof. For each x ∈ R, we define the function hx : y 7→ (x+y)+,p on R. Since
p ≥ 1, hx is a convex function and we obtain, using Jensen’s inequality, that
for each x ∈ R,

E[(x+ Y )+,p] = E[hx(Y )] ≥ hx(E(Y )) = hx(0) = x+,p.

We obtain the desired result by integrating w.r.t. the law of X.

Lemma 3.3.5. Let T > 0. Assume that a < 0 or σ > 0 and that there exists
γ > 0 such that E(IγT ) =∞. Then, E[(−aIT − σWJT )+,γ] =∞.

Proof. Suppose first that a < 0 and σ = 0. Then,

E[(−aIT − σWJT )+,γ] = |a|γE(IγT ) =∞.

Next, suppose that a ≤ 0 and σ > 0. In that case, using the identities in

law W
d
= −W and WJT

d
=
√
JTW1, the Cauchy-Schwarz inequality and the

independence between W1 and JT , we obtain

E[(−aIT − σWJT )+,γ] ≥ E[(σ
√
JTW1)+,γ] = σγE(W+,γ

1 )E(J
γ/2
T )

≥ σγE(W+,γ
1 )T−γ/2E(IγT ) =∞.
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Finally, if a > 0 and σ > 0, using the fact thatW
d
= −W , thatWJT

d
=
√
JTW1

and choosing C > 1, we obtain that

E[(−aIT − σWJT )+,γ] = E[(−|a|IT + σ
√
JTW1)+,γ]

≥ E[(−|a|IT + σ
√
JTW1)+,γ1{σ

√
JTW1≥C|a|IT }]

≥ E[((C − 1)|a|IT )γ1{σ
√
JTW1≥C|a|IT }].

Since IT√
JT
≤
√
T , by Cauchy-Schwarz’s inequality, we obtain using the inde-

pendence between W1 and IT

E[(−aIT − σWJT )+,γ] ≥ E

[
((C − 1)|a|IT )γ1{

W1≥C|a|
√
T

σ

}]
= P

(
W1 ≥

C|a|
√
T

σ

)
(C − 1)γ|a|γE(IγT ) =∞.

We can now give the proof of Theorem 3.3.1.

Proof of Theorem 3.3.1. The assumptions imply
∫
|x|>1
|x|KX(dx) < ∞ and

so, using Equation (3.3) and Proposition 3.2.4, we obtain

P(τ(y) ≤ T ) ≥ P

(
sup

0≤t≤T

(
−
∫ t

0+

dXs

E(R)s−

)
> y

)
≥ P((−δXIT − σXWJT −Nd

T )+ > y),

where δX and Nd = (Nd
t )t∈[0,T ] are defined as in Proposition 3.2.4.

Then, by independence, we get

E[(− δXIT − σXWJT −Nd
T )+,γT ]

=

∫
DT

E[(−δXIT (q)− σXWJT (q) −Nd
T (q))+,γT ]PE(R)(dq),

where DT is the Skorokhod space of càdlàg functions on [0, T ], the measure

PE(R) is the law of (E(R)t)t∈[0,T ], IT (q) =
∫ T

0
ds
qs

, JT (q) =
∫ T

0
ds
q2s

and

Nd
T (q) =

∫ T

0+

∫
{|x|≤1}

x

qs−
(µX(ds, dx)−KX(dx)ds)

+

∫ T

0+

∫
{|x|>1}

x

qs−
(µX(ds, dx)−KX(dx)ds).
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Denote by N ′T (q) and N ′′T (q) the two terms on the r.h.s. of the equation
above. Fixing q ∈ DT , we now prove that E(N ′T (q)) = 0 and E(N ′′T (q)) = 0.
First, note that by Theorem 1 p.176 in [Liptser and Shiryayev, 1989] and the
compensation formula, we find that

E([N ′. (q), N
′
. (q)]T ) = E

(∫ T

0+

∫
{|x|≤1}

x2

q2
s−
µX(ds, dx)

)
= E

(∫ T

0

∫
{|x|≤1}

x2

q2
s

KX(dx)ds

)
=

(∫ T

0

ds

q2
s

)(∫
{|x|≤1}

x2KX(dx)

)
.

Then, since q a strictly positive càdlàg function on a compact interval, the
integral

∫ T
0

ds
q2s
< ∞ and since

∫
{|x|≤1} x

2KX(dx) < ∞ by definition of the

Lévy measure, we have E([N ′. (q), N
′
. (q)]T ) < ∞. This shows that N ′(q) is a

(locally square-integrable) martingale and so E(N ′T (q)) = 0. For the second
term, similarly we have∫ T

0

∫
{|x|>1}

|x|
qs
KX(dx)ds =

(∫ T

0

ds

qs

)(∫
{|x|>1}

|x|KX(dx)

)
<∞.

Therefore, by Proposition II.1.28 p.72 in [Jacod and Shiryaev, 2003] and the
compensation formula, we have

E(N ′′T (q)) = E

(∫ T

0+

∫
|x|>1

x

qs−
µX(ds, dx)

)
− E

(∫ T

0

∫
|x|>1

x

qs−
KX(dx)ds

)
= 0.

Now, since the random variables −δXIT (q) − σXWJT (q) and −Nd
T (q) are in-

dependent and E(Nd
T (q)) = 0, for all q ∈ DT , we can apply Lemma 3.3.4 to

obtain

E[(−δXIT − σXWJT −Nd
T )+,γT ] ≥ E[(−δXIT − σXWJT )+,γT ].

Then, using Lemma 3.3.3 and Lemma 3.3.5 with a = δX , σ = σX , the variable
Z = (−δXIT − σXWJT )+ and p = γT , we can conclude that for all δ > 0,
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there exists a strictly positive sequence (yn)n∈N increasing to ∞ such that,
for all C > 0, there exists n0 ∈ N such that, for all n ≥ n0,

P(τ(yn) ≤ T ) ≥ C

yγTn ln(yn)1+δ
.

The above implies that

lim sup
y→∞

ln (P(τ(y) ≤ T ))

ln(y)
≥ −γT + lim

n→∞

ln(C)− ln(ln(yn)1+δ)

ln(yn)
= −γT

and this finishes the proof.

We can use a similar method to prove Corollary 3.3.2.

Proof of Corollary 3.3.2. First of all we show that the process Nd appearing
in the proof of Theorem 3.3.1 is uniformly integrable. We take first

N ′t =

∫ t

0+

∫
{|x|<1}

x

E(R)s−
(µX(ds, dx)−KX(dx)ds)

From the proof of Theorem 3.3.1, we see that

sup
t≥0

E[(N ′t)
2] = sup

t≥0
E

(∫ t

0

∫
{|x|<1}

x2

E2(R)s−
KX(dx)ds

)
= E(J∞)

∫
R
x21{|x|<1}KX(dx) <∞

the process N ′ is uniformly integrable, by de la Vallée-Poussin’s criterion.

Now, let

N ′′t =

∫ t

0+

∫
{|x|>1}

x

E(R)s−
µX(ds, dx)−

∫ t

0

∫
{|x|>1}

x

E(R)s−
KX(dx)ds

By the compensation formula

E(|N ′′∞|) ≤ 2E(I∞)

∫
{|x|>1}

|x|KX(dx) <∞
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and this shows that N ′′ has a finite (P− a.s.) limit as t→∞. Hence, Nd is
uniformly integrable and E(Nd

∞) = 0. From Proposition 3.2.4 we get that∫ ∞
0+

dXs

E(R)s−

d
= δXI∞ + σXWJ∞ +Nd

∞.

And thus, imitating the proof of Lemma 3.3.5, we conclude that

E[(−δXI∞ − σXWJ∞)+,γ∞ ] =∞.

Finally, from Lemma 3.3.3 with Z = (−δXI∞ − σXWJ∞)+ and p = γ∞ we
obtain the claimed result.

3.4 Moments of Exponential Functionals of

Lévy Processes

While Theorems 3.2.1 and 3.3.1 give the qualitative features of the ruin
probabilities, their usefulness rely on the knowledge of βT and β∞ whose
expression depend on the moments (and ultimately the law) of IT and I∞.
In this section, we briefly point to some known results on the law of these
exponential functionals and give a method to compute βT and β∞ in the case
when R is a Lévy process. We also apply these results to some classic models
in mathematical finance.

The question of the existence of the moments of I∞ and the formula in the
case when R is a subordinator were considered in [Bertoin and Yor, 2005],
[Carmona et al., 1997] and [Salminen and Vostrikova, 2018]. In the case when
R is a Lévy process, the question of the existence of the density of the law
of I∞, PDE equations for the density and the asymptotics for the law were
investigated in [Behme, 2015], [Behme and Lindner, 2015], [Bertoin et al.,
2008], [Dufresne, 1990], [Erickson and Maller, 2005], [Gjessing and Paulsen,
1997], [Kuznetsov et al., 2012], [Pardo et al., 2013], [Patie and Savov, 2018]
and [Rivero, 2012]. In the more general case of processes with independent
increments, conditions for the existence of the moments and recurrent equa-
tions for the moments were studied in [Salminen and Vostrikova, 2018] and
[Salminen and Vostrikova, 2019]. The existence of the density of such func-
tionals and the corresponding PDE equations were considered in [Vostrikova,
2018].
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Recall that when R is a Lévy process with characteristics (aR, σ
2
R, KR), its

exponential transform R̂ is also a Lévy process whose characteristics we de-
note (aR̂, σ

2
R̂
, KR̂). Recall also that the jumps of the processes are related by

the equation ∆R̂t = ln(1 + ∆Rt), for all t ≥ 0. The first result concerns βT .

Proposition 3.4.1. Suppose that R is a Lévy process. For α > 0 and T > 0
the following conditions are equivalent:

(i) E(JT (α)) <∞,

(ii)
∫
{|x|>1} e

−αxKR̂(dx) <∞,

(iii)
∫∞
−1

1{| ln(1+x)|>1}(1 + x)−αKR(dx) <∞.

Proof. By Fubini’s theorem, we obtain

E(JT (α)) = E

(∫ T

0

e−αR̂tdt

)
=

∫ T

0

E(e−αR̂t)dt.

So, E(JT (α)) < ∞ is equivalent to E(e−αR̂t) < ∞, for all t ≥ 0, which, by
Theorem 25.3, p.159 in [Sato, 1999], is equivalent to∫

{|x|>1}
e−αxKR̂(dx) <∞.

Then, note that∫
{|x|>1}

e−αxKR̂(dx) =

∫ 1

0

∫
{|x|>1}

e−αxKR̂(dx)ds

= E

( ∑
0<s≤1

e−α∆R̂s1{|∆R̂s|>1}

)

= E

( ∑
0<s≤1

(1 + ∆Rs)
−α1{| ln(1+∆Rs)|>1}

)

=

∫ ∞
−1

1{| ln(1+x)|>1}(1 + x)−αKR(dx).
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This proposition allows us to compute βT in two standard models of mathe-
matical finance.

Example 3.4.2 (Jump-diffusion log-returns). Suppose that R̂ is given by
R̂t = aR̂t + σR̂Wt +

∑Nt
n=0 Yn, where aR̂ ∈ R, σR̂ ≥ 0, W = (Wt)t≥0 is

a standard Brownian motion and N = (Nt)t≥0 is a Poisson process with
rate γ > 0, and (Yn)n∈N is a sequence of iid random variables. Suppose, in
addition, that all processes involved are independent. If for (Yn)n∈N we take
any sequence of i.i.d. random variables with E(e−αY1) < ∞, for all α > 0,
then βT = +∞. If for (Yn)n∈N we take a sequence of i.i.d. random variables
with E(e−αY1) < ∞, when α < α0, for some α0 > 0, and E(e−α0Y1) = +∞,
then βT = α0.

Example 3.4.3 (Tempered stable log-returns). Suppose that R̂ is a Lévy
process with triplet (aR̂, σ

2
R̂
, KR̂), where aR̂ ∈ R, σR̂ ≥ 0 and KR̂ is the

measure on R given by

KR̂(dx) =
(
C1|x|−(1+α1)e−λ1|x|1{x<0} + C2x

−(1+α2)e−λ2x1{x>0}
)
dx,

where C1, C2 > 0, λ1, λ2 > 0 and 0 < α1, α2 < 2. This specification includes
as special cases the Kou, CGMY and variance-gamma models (see e.g. Sec-
tion 4.5 p.119 in [Cont and Tankov, 2004]). We will show that βT = λ1.
Note that, using Proposition 3.4.1 and the change of variables y = −x, we
see that E(JT (α)) <∞, for α > 0, is equivalent to

C1

∫ ∞
1

y−(1+α1)e−(λ1−α)ydy + C2

∫ ∞
1

x−(1+α2)e−(α+λ2)xdx <∞.

But, the first integral converges if α ≤ λ1 and diverges if α > λ1 and second
integral always converges. Now, if α ≥ 2, it is easy to show that E(JT (α)) <

∞ implies E(J
α/2
T ) < ∞ (see Lemma 3.2.3). Thus, if λ1 ≥ 2, we have

βT = λ1.

The method to compute β∞ is even more explicit since it can be computed
from the Laplace exponent as proven in the following proposition.

Proposition 3.4.4. Suppose that R is a Lévy process and that R̂ admits a
Laplace transform, for all t ≥ 0, i.e. for α > 0

E(exp(−αR̂t)) = exp(tψR̂(α))
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and that its Laplace exponent ψR̂ has a strictly positive root β0. Then, the
following conditions are equivalent:

(i) E(Iα∞) <∞,

(ii) E(J
α/2
∞ ) <∞,

(iii) E(J∞(α)) <∞,

(iv) α < β0.

Therefore, β∞ = β0.

Proof. Note that, for any α > 0 and k > 0,

exp(tψR̂(α)) = E(exp(−αR̂t)) = E
(

exp
(
−α
k
kR̂t

))
= exp

(
tψkR̂

(α
k

))
.

Therefore, ψR̂(α) = ψkR̂
(
α
k

)
, for all α > 0 and k > 0. Then, Lemma 3 in

[Rivero, 2012] yields the desired result.

Remark 3.4.5. The root of the Laplace exponent was already identified as
the relevant quantity for the tails of P(τ(y) <∞) in [Paulsen, 2002].

Thus, we can compute β∞ in two important examples.

Example 3.4.6 (Black-Scholes log-returns). Suppose that Rt = aRt+σRWt,
for all t ≥ 0, where aR ∈ R, σR > 0 and W = (Wt)t≥0 is a standard Brownian

motion, then R̂t =
(
aR −

σ2
R

2

)
t + σRWt, for all t ≥ 0. Thus, we obtain

ψR̂(α) = −
(
aR − 1

2
σ2
R

)
α +

σ2
R

2
α2 and, by Proposition 3.4.4, β∞ = 2aR

σ2
R
− 1.

We remark that this coincides with the results in e.g. [Frolova et al., 2002]
and [Kabanov and Pergamentshchikov, 2016].

Example 3.4.7 (Jump-diffusion log-returns). Suppose that R̂t = aR̂t +

σR̂Wt +
∑Nt

n=0 Yn, where aR̂ ∈ R, σR̂ ≥ 0 and W = (Wt)t≥0 is a standard
Brownian motion and N = (Nt)t≥0 is a Poisson process with rate γ > 0, and
(Yn)n∈N is a sequence of i.i.d. random variables with E(e−αY1) < ∞, for all
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α > 0. Suppose, in addition, that all processes involved are independent. It
is easy to see that, for all α > 0,

ψR̂(α) = −aR̂α +
σ2
R̂

2
α2 + γ

(
E(e−αY1)− 1

)
.

Now, it is possible to show (see e.g. [Spielmann, 2018]) that the equation
ψR̂(α) = 0 has an unique non-zero solution if, and only if, R̂ is not a sub-
ordinator and ψ′(0+) < 0 which, under some additional conditions to invert
the differentiation and expectation operators, is equivalent to aR̂ > γE(Y1).
In that case, β∞ is the unique non-zero real solution of this equation.

3.5 Conditions for Ruin with Probability One

To complete our study of the ruin problem for the GOU process we give, in
this section, sufficient conditions for ruin with probability one when X has
positive jumps bounded by a > 0 and verifies one of the following condi-
tions

aX < 0 or σX > 0 or KX([−a, a]) > 0. (3.13)

Theorem 3.5.1. Assume that X verifies the condition (3.13). In addition
assume that (P− a.s.), I∞ =∞, J∞ =∞ and that there exists a limit

lim
t→∞

It√
Jt

= L

with 0 < L <∞. Then, for all y > 0,

P(τ(y) <∞) = 1.

In the case of Lévy processes we express the conditions on the exponential
functionals in terms of their characteristics to get the following result which
is similar to the known results in e.g. [Kabanov and Pergamentshchikov,
2018] and [Paulsen, 1998].
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Corollary 3.5.2. Assume that X verifies the condition (3.13). Suppose that
R is a Lévy process with characteristic triplet (aR, σ

2
R, KR) satisfying∫ ∞

−1

| ln(1 + x)|1{| ln(1+x)|>1}KR(dx) <∞ (3.14)

and

aR −
σ2
R

2
+

∫ ∞
−1

(ln(1 + x)− x1{| ln(1+x)|≤1})KR(dx) < 0.

Then, for all y > 0,
P(τ(y) <∞) = 1.

Proof of Theorem 3.5.1. We have, for all y > 0,

P(τ(y) <∞) ≥ P

(
sup
t≥0

(
−
∫ t

0+

dXs

E(R)s−

)
> y

)
≥ P

(
lim sup
t→∞

(
−
∫ t

0+

dXs

E(R)s−

)
> y

)
≥ P

(
lim sup
t→∞

(
−
∫ t

0+

dXs

E(R)s−

)
= +∞

)
.

But, the independence of X and R implies

P

(
lim sup
t→∞

(
−
∫ t

0+

dXs

E(R)s−

)
=∞

)

=

∫
D

P

(
lim sup
t→∞

(
−
∫ t

0+

dXs

qs−

)
=∞

)
PE(R)(dq)

where D is Skorokhod space of càdlàg functions on R+. We remark that the
event {

lim sup
t→∞

(
−
∫ t

0+

dXs

qs−

)
=∞

}
is a tail event for an additive process

(
−
∫ t

0+

dXs

qs−

)
t≥0

and this event has

either probability 0 or 1. We will now show that

P

(
lim sup
t→∞

(
−
∫ t

0+

dXs

qs−

)
=∞

)
= 1
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on the set

Q =

{
q ∈ D : I∞(q) =∞, J∞(q) =∞, lim

t→∞

It(q)√
Jt(q)

= L(q), 0 < L(q) <∞

}

of probability 1. Here we denote as previously It(q) =
∫ t

0
q−1
s ds and Jt(q) =∫ t

0
q−2
s ds.

Imitating the proof of Proposition 3.2.4 for the truncation function 1{|x|≤a},
we obtain

P

(
lim sup
t→∞

(
−
∫ t

0+

dXs

qs−

)
=∞

)
= P

(
lim sup
t→∞

(
−aXIt(q)− σXWJt(q) −M

a,d
t (q)− Ua

t (q)
)

=∞
)

≥ P

(
lim sup
t→∞

(
−aXIt(q)− σXWJt(q) −M

a,d
t (q)

)
=∞

)
,

where

Ma,d
t (q) =

∫ t

0+

∫
R
x1{|x|≤a}(µX(ds, dx)−KX(dx)ds)

and

Ua
t (q) =

∫ t

0+

∫
R
x1{|x|>a}µX(ds, dx).

The last inequality follows from the assumption KX(]a,+∞[) = 0 which
implies that Ua

t ≤ 0 for all t ≥ 0.

Next, Ht(q) = −σXWJt(q)−M
a,d
t (q) is a locally square-integrable martingale

and using the independence of the terms in the Lévy-Itô decomposition of
X, we can obtain its variance :

E(Ht(q)
2) =

(
σ2
X +

∫
R
x21{|x|≤a}KX(dx)

)
Jt(q) = σ2

ξJt(q)

with σ2
ξ = σ2

X +
∫
R x

21{|x|≤a}KX(dx).

Now if σξ = 0, then by assumption we would have aX < 0 and Ma,d
t = 0, for

all t ≥ 0, and thus

P

(
lim sup
t→∞

(
−
∫ t

0+

dXs

qs−

)
=∞

)
≥ P

(
lim sup
t→∞

(−aXIt(q)) =∞
)

= 1

101



ON THE RUIN PROBLEM FOR GOU PROCESSES

since I∞(q) =∞ on the set Q.

If σξ > 0, we take an increasing sequence (tn)n∈N starting from zero and
increasing to ∞ and, for all n ∈ N∗ and 0 ≤ k ≤ n we set

H̃n,k =
Htk(q)−Htk−1

(q)

σξ
√
Jtn(q)

.

Then, (H̃n,k)n,k∈N∗ is a martingale difference sequence (for the obvious fil-
tration) which satisfies the conditions of the central limit theorem for such
sequences (see e.g. Theorem 8 p.442 in [Liptser and Shiryayev, 1989]). Thus,

Htn(q)

σξ
√
Jtn(q)

=
n∑
k=1

H̃n,k
d→ ξ

as n→∞, where ξ
d
= N (0, 1). Thus,

− 1√
Jtn(q)

∫ tn

0+

dXs

qs−

d→ −aXL(q) + σξξ

as n → ∞. Then, by the Skorokhod representation theorem, we can find a
probability space (Ω̃, F̃ , P̃), a random variable ξ̃ and a process X̃ which are
equal in law to the random variable ξ and the process X respectively such
that

lim
n→∞

− 1√
Jtn(q)

∫ tn

0+

dX̃s

qs−
= −aXL(q) + σξ ξ̃ (P̃− a.s.).

Thus, on the set {−aXL(q) + σξ ξ̃ > 0} of positive probability, we have

lim sup
t→∞

(
−
∫ t

0+

dX̃s

qs−

)
≥ lim

n→∞

(
−
∫ tn

0+

dX̃s

qs−

)
=∞,

and so also

P

(
lim sup
t→∞

(
−
∫ t

0+

dXs

qs−

)
=∞

)
> 0.

So, this last probability is equal to one for all q ∈ Q. But, since Q is itself
an event of probability 1, we finally obtain

P

(
lim sup
t→∞

(
−
∫ t

0+

dXs

E(R)s−

)
=∞

)
= 1.
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Finally, we apply this result to the case of Lévy processes.

Proof of Corollary 3.5.2. Assumption (3.14) implies that E(|R̂1|) <∞ and,
by the law of large numbers for Lévy processes, we get that

lim
t→∞

R̂t

t
= E(R̂1) = aR −

σ2
R

2
+

∫ ∞
−1

(ln(1 + x)− x1{| ln(1+x)|≤1})KR(dx).

But, the fact that limt→∞
R̂t
t
< 0 is equivalent to I∞ = J∞ = ∞ (P − a.s.)

by Theorem 1 in [Bertoin and Yor, 2005]. So it is enough to check that the
limit

lim
t→∞

It√
Jt

= L

exists with 0 < L <∞ (P− a.s.).

We obtain, using de l’Hospital’s rule and the time-reversion property of R̂
that

lim
t→∞

It√
Jt

= lim
t→∞

2eR̂t
√
Jt

d
= 2

(∫ ∞
0

e2R̂sds

)1/2

The last integral is finite (P−a.s.) again by Theorem 1 in [Bertoin and Yor,
2005].
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Chapter 4

On the Law at Fixed Time of
GOU Processes

In this chapter, we assume thatX and R are independent Lévy processes with
triplets (aX , σ

2
X , KX) and (aR, σ

2
R, KR), and such that ∆Rt = Rt−Rt− > −1,

for all t ≥ 0 (P− a.s.). We have seen (in Section 1.3) that the GOU process
Y = (Yt)t≥0 given by

Yt = E(R)t

(
y +

∫ t

0+

E(R)−1
s−dXs

)
, t ≥ 0, (4.1)

where E(.) is Doléans-Dade’s exponential (see Proposition 1.2.10 for the def-
inition) is the unique (strong) solution to the following SDE :

dYt = dXt + Yt−dRt, t ≥ 0,

with Y0 = y ≥ 0 and is used as a model for the surplus of an insurance
company facing both market and insurance risks. In the last chapter, we
studied the ruin probabilities of this process but we also mentioned that
today the risk of an enterprise is calculated mostly via measures based on
the quantiles of the distribution of Yt, for some fixed time t ≥ 0 (this is
closely related to the so-called value-at-risk 1). Thus, in this chapter, we give
some directions for the study of the law of Yt.

1See e.g. [McNeil et al., 2015] for the definition and related risk measures.
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We start this chapter by recalling some related results in Section 4.1. Then,
in Section 4.2, we use standard methods of the theory of Markov processes
to obtain a partial integro-differential equation for the density when it exists.
We also give sufficient conditions for the existence of this density. Since this
equation seems hard to solve, we concentrate in the remaining parts on ap-
proximations for the law of Yt when t is either small or large. Following this
idea, we obtain, in Section 4.3, a normal-log-normal mixture approximation
of the law of Yt when t is small, and, in Section 4.4, log-normal approxima-
tions for the negative and positive parts of the law of Yt when t is large, in
the so-called small-volatility case.

4.1 Related Results

The question of the identification of the law of Yt, for fixed t ≥ 0, seems to
be quite open. There are, however, some results in the literature which we
mention now. In [Hadjiev, 1985], the Laplace transform of Yt is computed
when Y is the LOU process (see Section 1.3 for the definition) and a slight
adaptation of the proof yields the characteristic function for these processes.
However, these expressions seems hard to invert even in this simpler case. In
[Feng et al., 2019], the case when Rt = t, for all t ≥ 0, and when X is a Lévy
process is studied. The authors obtain a formula for the Mellin transform
of Ye(q), where e(q) is an independent exponential random variable with rate
q > 0 and they are able to invert the Mellin transform to obtain the density of
Ye(q) when, in addition, X is the Kou process. Lastly, in [Brokate et al., 2008]
a partial integro-differential equation is obtained for f(t, x) = P(Yt > x) in
the particular case when X is the Cramér-Lundberg model, R is a Lévy
process and y = 0.

In contrast with the identification of the law of Yt, the question of the exis-
tence and the identification of the stationary law of Y which is, under some
conditions (see Lemma 4.4.1 below), the random variable

Z∞ =

∫ ∞
0+

E(R)s−dXs,

has received a great deal of attention. This is due to the fact that Z∞ is the
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natural generalization of the exponential functional

I∞ =

∫ ∞
0

E(R)s−ds

which appears in numerous domains of probability (see [Bertoin and Yor,
2005] for some examples). In [Carmona, 1996], under some conditions, par-
tial integro-differential equations are obtained for the characteristic function
and the density (when it exists) of Z∞. These results are treated more exten-
sively and generalized in [Behme and Lindner, 2015], [Carmona et al., 2001]
and [Gjessing and Paulsen, 1997]. We mention specifically [Gjessing and
Paulsen, 1997] where a list of explicit distributions for Z∞ is given for dif-
ferent choices of X and R. The are many other more subtle results available
on Z∞ such as a characterisation of the almost sure finiteness, conditions for
the infinite decomposability and conditions for the existence of the density
of its law. Since they are less related to our concern in this chapter, we refer
the interested reader to [Behme, 2015] and [Bertoin et al., 2008] and the
references therein for a more extensive discussion.

In this chapter, we thus propose the study of Yt as an interesting problem in
itself and lay some directions which expand the mentioned literature.

4.2 Kolmogorov-type Equation and Existence

of the Density

Recall that if S = (St)t≥0 is a time-homogeneous Markov process on R, we
define its transition semi-group (Pt)t≥0 as Ptf(x) = Ex(St), for x ∈ R and
f ∈ C(R) and where Ex(.) represents the expectation w.r.t. the law of St
conditionally to S0 = x. For the Markov process S we can then define the
domain of the generator DS as the set of f ∈ C(R) such that there exists a
limit

ASf = lim
t→0

Ptf − f
t

w.r.t. the uniform topology on C(R) (i.e. the topology given by the uniform
norm |g|∞ = supx∈R |g(x)|).2 For f ∈ DS, the operator AS is called the
generator of S.

2We refer to Section 1.1 for the definition of the functional spaces used in this chapter.
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Feller processes are time-homogeneous Markov process for which the genera-
tor satisfies some additional regularity conditions. Following the convention
of [Behme and Lindner, 2015], we define Feller processes as follows.

Definition 4.2.1. A time-homogeneous Markov process (St)t≥0 is a Feller
process if its transition semi-group (Pt)t≥0 satisfies, for each f ∈ C0(R),

1. Ptf ∈ C0(R),

2. limt→0 Ptf = f , for the uniform topology on C(R).

In [Behme and Lindner, 2015] it was shown that the GOU process (4.1) is a
Feller process and an expression for the generator is given.

Proposition 4.2.2 (Corollary 3.2 in [Behme and Lindner, 2015]). The pro-
cess Y is a Feller process with generator AY whose domain contains the set

S = {f ∈ C2
0(R) : lim

x→∞
(|xf ′(x)|+ |x2f ′′(x)|) = 0},

and which, for f ∈ S, is given by

AY f(x) =
1

2
(σ2

X + σ2
Rx

2)f ′′(x) + (aX + aRx)f ′(x)

+

∫ ∞
−1

(f(x+ xz)− f(x)− f ′(x)xz1{|z|≤1})KR(dz)

+

∫
R
(f(x+ z)− f(x)− f ′(x)z1{|z|≤1})KX(dz),

(4.2)

where KX and KR are the Lévy measures of the processes X and R.

From this expression, we can now obtain an equation for the density (when
it exists) using the standard theory of Feller processes and integration by
parts. This is a similar method to the one used to obtain the equation for
the density of exponential functionals of processes with independent incre-
ments in [Vostrikova, 2018]. We denote by p(t, x) the density of the law of
Yt w.r.t. the Lebesgue measure and denote p = (p(t, x))t≥0,x∈R.

Theorem 4.2.3. Assume that KR((−1,∞)) < ∞ and that KX(R) < ∞.
Assume that Yt admits a density p ∈ C1,2((0, T ) × R) w.r.t. the Lebesgue
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measure λ, for all t ∈ (0, T ). Then, p satisfies the following partial integro-
differential equation :

∂tp(t, x) =

σ2
X

2
∂xxp(t, x) +

σ2
R

2
∂xx
(
x2p(t, x)

)
− aX∂xp(t, x)− aR∂x(xp(t, x))

+

∫ ∞
−1

(
p(t, x(1 + z)−1)

1 + z
− p(t, x) + z1{|z|≤1}∂x(xp(t, x))

)
KR(dz)

+

∫
R

(
p(t, x− z)− p(t, x) + z1{|z|≤1}∂xp(t, x)

)
KX(dz)

for all (t, x) ∈ (0, T ) × R, with initial condition p(0, x) = δy(x), where δy is
the Dirac measure at y > 0.

Proof. Condition 2 of Definition 4.2.1 means that the transition semi-group
is strongly continuous on C0(R). Moreover, by Proposition 1.5 p.9 in [Ethier
and Kurtz, 1986], we then know that for f ∈ DY , we have Ptf ∈ DY , for
each t ≥ 0, and

d

dt
Ptf = AY Ptf = PtAY f. (4.3)

Let Mt = f(Yt)−
∫ t

0
AY f(Yu)du, for all t ≥ 0 and f ∈ DY . We will prove first

that (Mt)t≥0 is a martingale w.r.t. the natural filtration (FYt )t≥0 of Y . The
integrability follows from the fact that f and AY f are continuous functions
vanishing at infinity and thus are bounded. For the martingale property,
note that, for 0 ≤ s < t, we obtain (P − a.s.) using the change of variables
v = u− s and Fubini’s theorem,

E(Mt −Ms|FYs ) = E(f(Yt)− f(Ys)|FYs )−
∫ t

s

E(AY f(Yu)|FYs )du

= E(f(Yt)− f(Ys)|FYs )−
∫ t−s

0

E(AY f(Yv+s)|FYs )dv.

But, from the Markov property and Equation (4.3), we obtain (P− a.s.)

E(AY f(Yv+s)|FYs ) = E(AY f(Yv+s)|Ys) = PvAY f(Ys) =
d

dv
Pvf(Ys).
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Thus, (P− a.s.)

E(Mt −Ms|FYs ) = E(f(Yt)|Ys)− f(Ys)−
∫ t−s

0

d

dv
Pvf(Ys)dv

= Pt−sf(Ys)− f(Ys)−
∫ t−s

0

d

dv
Pvf(Ys)dv = 0.

This means that (Mt)t≥0 is a martingale and E(Mt) = E(M0) = 0, for all
t ≥ 0, and thus, if Yt admits a density p(t, .), that

d

dt
E[f(Yt)] =

∫
R
f(x)∂tp(t, x)dx =

∫
R
AY f(x)p(t, x)dx, (4.4)

for all f ∈ DY .

Let C2
c designate the functions of class C2 with compact support. Then,

C2
c ⊂ S and, using the definition of the generator of Y , we find that for
f ∈ C2

c , ∫
R
AY f(x)p(t, x)dx = I1 + I2 + I3 + I4,

where

I1 =

∫
R

1

2
(σ2

X + σ2
Rx

2)f ′′(x)p(t, x)dx,

I2 =

∫
R
(aX + aRx)f ′(x)p(t, x)dx,

I3 =

∫
R

∫ ∞
−1

p(t, x)(f(x+ xz)− f(x)− f ′(x)xz1{|z|≤1})KR(dz)dx

and

I4 =

∫
R

(∫
R
(f(x+ z)− f(x)− f ′(x)z1{|z|≤1})p(t, x)dx

)
KX(dz).

Using integration by parts, we obtain

I1 =

∫
R

(
σ2
X

2
∂xxp(t, x) +

σ2
R

2
∂xx
(
x2p(t, x)

))
f(x)dx.

and

I2 = −
∫
R

(aX∂xp(t, x) + aR∂x (xp(t, x))) f(x)dx.

110



ON THE LAW AT FIXED TIME OF GOU PROCESSES

Using the change of variables u = (1+z)x and KR((−1,∞)) <∞, we obtain

I3 =

∫
R

(∫ ∞
−1

p(t, u(1 + z)−1)(1 + z)−1KR(dz)

)
f(u)du

−
∫
R

(∫ ∞
−1

p(t, x)KR(dz)

)
f(x)dx

+

∫
R

(∫ ∞
−1

z1{|z|≤1}∂x(xp(t, x))KR(dz)

)
f(x)dx.

Using the change of variables u = x+ z and KX(R) <∞, we obtain

I4 =

∫
R

(∫
R
p(t, u− z)KX(dz)

)
f(u)du−

∫
R

(∫
R
p(t, x)KX(dz)

)
f(x)dx

+

∫
R

(∫
R
z1{|z|≤1}∂xp(t, x)KX(dz)

)
f(x)dx.

Since Equation (4.4) is valid for all f ∈ C2
c , this yields the claimed equation

(λ− a.s.).

The theorem gives no information about the existence of the density of Yt,
however. Thus, we give, in the next proposition, some simple conditions for
the existence of a sufficiently regular density and thus for the existence of a
classical solution to the PIDE from Theorem 4.2.3. We recall that Yt depends
on y its initial value and so does p. To make this dependence explicit, we
will write py(t, x) instead of p(t, x) from now on.

Proposition 4.2.4. Assume that

1. E(|X1|p) <∞ and E(|R1|p) <∞, for all p ∈ N∗,

2. σX > 0,

3. there exists ρ > 0 such that KR((−∞,−1 + ρ]) = 0.

Then, for all T > 0, the function (y, t, x) 7→ py(t, x) is of class C∞(R∗+ ×
(0, T )× R).

Proof. Recall that the Lévy-Itô decompositions (1.11) of X and R are:

Xt = δXt+ σXW
(1)
t +

∫ t

0+

x(µX(ds, dx)−KX(dx)ds) (4.5)
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and

Rt = δRt+ σRW
(2)
t +

∫ t

0+

x(µR(ds, dx)−KR(dx)ds),

where δX = E(X1) and δR = E(R1) and (W
(1)
t )t≥0 and (W

(2)
t )t≥0 are two

independent Brownian motions.

Since the processes X and R are independent, the process L = (Lt)t≥0 given
by

Lt =

( ∫ t
0+

∫
R x(µX(ds, dx)−KX(dx)ds)∫ t

0+

∫ 1

−∞ x(µR(ds, dx)−KR(dx)ds)

)
,

for all t ≥ 0, is a two dimensional Lévy process. Thus, its jump measure µL
is a Poisson random measure on E = R × (−∞, 1) and its Lévy measure is
KL(dz1, dz2) = KX(dz1)δ0(z2)dz2 + KR(dz2)δ0(z1)dz1, where δ0 is the Dirac
measure at 0. The expression of KL follows from the fact that since X and
R are independent they do not jump together and, thus, the jumps of L are
caused either by the jumps of X or R, i.e., the number of jumps of L of
sizes belonging to A ⊂ E is the sum of the number of jumps of X of sizes
belonging to A ∩ R × {0} and the number of jumps of R of sizes belonging
to A ∩ {0} × (−∞, 1).

Thus, the process Y can be rewritten as the solution to the following SDE:

Yt = y +

∫ t

0

a(Ys−)ds+

∫ t

0+

b(Ys−)dWs

+

∫ t

0+

∫
E

c(Ys−, z1, z2)(µL(ds, dz1, dz2)−KL(dz1, dz2)ds),

(4.6)

where Wt = (W
(1)
t ,W

(2)
t )T is a two-dimensional Brownian motion, a(u) =

δX + δRu, b(u) = (σX , σRu) ∈M1,2(R) and c(u, z1, z2) = z1 + uz2 are appro-
priately chosen functions. HereM1,2(R) is the space of real-valued matrices
with 1 row and 2 columns and the product b(Ys−)dWs has to be interpreted

as the scalar product between b(Ys−) and (dW
(1)
t , dW

(2)
t )T .

To prove the existence of the density, we will now use Theorem 2-29 in
[Bichteler et al., 1987], which gives conditions for the existence of densities
for solutions of SDEs of the form (4.6). In order to state the theorem we
introduce the following conditions which are adapted to our problem.

The first condition is (A− r):
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• a, b are r-times differentiable with bounded derivatives of all orders,

• c is R+ × E-measurable, c(., z1, z2) is r-times differentiable for each
(z1, z2) ∈ E, c(0, .) ∈ ∩∞p=2Lp(E,KL) and

sup
u∈R

∣∣∣∣( ∂

∂u

)n
c(u, .)

∣∣∣∣ ∈ ∞⋂
p=2

Lp(E,KL).

for all 1 ≤ n ≤ r, where, for an integer p ≥ 2, the notation Lp(E,KL)
denotes the class of functions on E whose p-th power is integrable w.r.t.
to KL.

The second condition is (B− (ε, δ)): there exists ε > 0 and δ ≥ 0 such that,
for all u ∈ R, we have

b(u)b(u)T ≥ ε

1 + |u|δ
.

And the last condition is (C−Ξ): there exists Ξ > 0 such that∣∣∣∣1 + w
∂

∂u
c(u, z1, z2)

∣∣∣∣ ≥ Ξ,

for all w ∈ [0, 1], u ∈ R and (z1, z2) ∈ E.

Fixing r ∈ N∗ and T > 0, Theorem 2-29 p.15 in [Bichteler et al., 1987],
shows that if the conditions (A− (2r + 10)), (B− (ε, δ)) and (C−Ξ) are
satisfied, then the function (y, t, x) 7→ py(t, x) is of class Cr(R∗+× (0, T )×R).

Concerning condition (A− (2r + 10)) we see that, in our case, it is equiva-
lent to ∫

E

|z1|pKL(dz1, dz2) <∞ and

∫
E

|z2|pKL(dz1, dz2) <∞,

which in turn is equivalent to∫
R
|z1|pKX(dz1) <∞ and

∫ 1

−∞
|z2|pKR(dz2) <∞,

or E(|X1|p) <∞ and E(|R1|p) <∞, for all integers p ≥ 2, by Theorem 25.3
p.159 in [Sato, 1999]. This shows that (A− (2r + 10)) is satisfied, for all
r ∈ N∗.
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Condition (B− (ε, δ)) is satisfied with δ = 0 and ε = σ2
X , since b(u)b(u)T =

σ2
X + σ2

Ru
2 ≥ σ2

X , for all u ∈ R.

Finally, for the last condition, note that, since z2 ≥ −1 + ρ by assumption 3,
we have

1 + w
∂

∂u
c(u, z1, z2) = 1 + wz2 ≥ 1 + (ρ− 1)w.

Now if ρ ≥ 1, we take Ξ = 1 and the proof is finished. If ρ < 1, the function
w 7→ 1 + (ρ − 1)w is non-increasing and 1 + w ∂

∂u
c(u, z1, z2) ≥ ρ. Thus, we

can take Ξ = ρ to satisfy condition (C−Ξ) and to finish the proof.

The assumptions in the last proposition are somewhat restrictive, but they
allow to formulate the following proposition which describes the density of
the pure diffusion model.

Proposition 4.2.5 (Fokker-Plank Equation in the Pure Diffusion Case).

Assume that Xt = aXt + σXW
(1)
t and Rt = aRt + σRW

(2)
t , for all t ≥ 0,

where W (1) = (W
(1)
t )t≥0 ans W (2) = (W

(2)
t )t≥0 are two independent Brownian

motions. Assume that σX > 0. Then, Yt (with Y0 = y > 0) admits a density
py such that (y, t, x) 7→ py(t, x) is of class C∞(R∗+ × (0, T ) × R), for any
T > 0, and it is the unique solution of the following PDE :

∂tp
y(t, x) =

σ2
X

2
∂xxp

y(t, x) +
σ2
R

2
∂xx
(
x2py(t, x)

)
− aX∂xpy(t, x)

− aR∂x (xpy(t, x))

with (t, x) ∈ (0, T )× R and initial condition py(0, x) = δy(x).

Proof. The existence of the density follows from Proposition 4.2.4 and the
form of the equation from Theorem 4.2.3. The only thing that remains to be
checked is the uniqueness of the solution.

Note that we can rewrite the equation in the parabolic form

∂tp
y(t, x)− a(x)∂xxp

y(t, x) + b(x)∂xp
y(t, x) + c(x)py(t, x) = 0

with

a(x) =
1

2
(σ2

X + σ2
Rx

2),

b(x) = 2σ2
R − aX − aRx
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and
c(x) = σ2

R − aR.

We also have

a(x) =
1

2
(σ2

X + σ2
Rx

2) ≥ σ2
X

2
> 0,

for all x ∈ R, and, thus, the equation is uniformly parabolic in the sense of
the definition p.350 in [Evans, 1998]. Thus, the uniqueness follows from the
general uniqueness result for this type of equation, e.g. Theorem 4 p.358 in
[Evans, 1998].

We thus obtained an equation that yields as a solution the density of Yt, for
each fixed time t ≥ 0, and showed that, in the pure diffusion case at least,
the solution to the equation in Theorem 4.2.3 is exactly this density. How-
ever, these results seem to be of little practical value since, even in the pure
diffusion case, the equations seem hard to integrate without some numerical
method. We will thus focus in the remaining parts on approximations for
the laws of Yt, when t is either small or large.

4.3 Small-time Approximation

In this section, we will suggest an approximating distribution for Yt when t
is small. This could be useful in the banking business where risk measures
such as value-at-risk are usually computed overnight.

Let R̂ = (R̂t)t≥0 be the exponential transform of R. Then, by definition, we
have

Yt = eR̂t
(
y +

∫ t

0+

e−R̂s−dXs

)
, t ≥ 0.

Define also the exponential functional of R̂ by

It =

∫ t

0

eR̂s−ds, t ≥ 0.

The approximations we obtain will depend themselves on an approximation
of the exponential functional. In order to have an explicit approximation for
this functional, we restrict ourselves to the case where Rt = aRt + σRW

(2)
t
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and, hence, R̂t = dRt+ σRW
(2)
t with dR = aR − σ2

R/2.

Theorem 4.3.1. Assume that Rt = aRt+σRW
(2)
t , for all t ≥ 0, with σR > 0,

and that ∫
R
|x|KX(dx) <∞. (4.7)

Then, as t→ 0+,
Yt − y − δXIt√

σ(y)It

d→ N (0, 1),

where σ(y) = σ2
X + σ2

Ry
2 and δX = E(X1).

Proof. First note that, for each t > 0,

(It, Yt)
d
=

(
It, ye

R̂t +

∫ t

0+

eR̂s−dXs

)
. (4.8)

This follows from the time-reversal property of X and R̂, namely, for each
t ≥ 0, we have

(R̂t, (R̂t − R̂(t−s)−)0≤s≤t, (Xt −X(t−s)−)0≤s≤t)
d
= (R̂t, (R̂s)0≤s≤t, (Xs)0≤s≤t)

and so

Yt = yeR̂t +

∫ t

0+

eR̂t−R̂s−dXs
d
= yeR̂t +

∫ t

0+

eR̂s−dXs.

The condition (4.7) implies that X is integrable, and so, using the Lévy-Itô
decomposition (4.5) and Proposition 3.2.4, we obtain(∫ t

0+

eR̂s−dXs

)
t≥0

d
=

(
δXIt + σX

∫ t

0

eR̂s−dW (1)
s +Nd

t

)
t≥0

(4.9)

with

Nd
t =

∫ t

0+

∫
R
eR̂s−x(µX(ds, dx)−KX(dx)ds),

and where W (1) and Nd are independent.

Let

Vt =
Yt − y − δXIt√

σ(y)It
, t ≥ 0.
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We will compute the characteristic function of Vt and show that it tends to
the characteristic function of a standard normal distribution as t→ 0+.

We have, for all u ∈ R,

E [exp (iuVt)] =

E

[
E

(
exp

(
iu
Yt − y − δXIt√

σ(y)It

)∣∣∣∣∣ R̂s = g(s), s ≥ 0

)]
.

(4.10)

For any g ∈ D, denote It(g) =
∫ t

0
eg(s−)ds, Jt(g) =

∫ t
0
e2g(s−)ds and

Nd
t (g) =

∫ t

0+

∫
R
eg(s−)x(µX(ds, dx)−KX(dx)ds).

Using the independence between X and R, the conditional independence
between W (1) and Nd and Equations (4.8) and (4.9), we find that the condi-
tional expectation in (4.10) is equal to

E

(
exp

(
iu
y(eg(t) − 1) + σX

∫ t
0+
eg(s−)dW̃s +Nd

t (g)√
σ(y)It(g)

))

= exp

(
iu
y(eg(t) − 1)√
σ(y)It(g)

)
E

(
exp

(
iu
σX
∫ t

0+
eg(s−)dW

(1)
s√

σ(y)It(g)

))

× E

(
exp

(
iu

Nd
t (g)√

σ(y)It(g)

))
.

Since
∫ t

0+
eg(s−)dW

(1)
s is a normal random variable with variance Jt(g), the

first expectation in the r.h.s. of the above equation is equal to

exp

(
− u

2σ2
X

2σ(y)

Jt(g)

It(g)

)
.

For the second one we obtain, using the compensation theorem (which is
allowed by (4.7)) and the expression for the characteristic function of integrals
w.r.t. Poisson random measures see e.g. Proposition 19.5 p.123 in [Sato,
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1999],

E
(
exp

(
iu[σ(y)It(g)]−1/2Nd

t (g)
))

= exp

(∫ t

0+

∫
R

(
eiu[σ(y)It(g)]−1/2eg(s−)x − iueg(s−)x√

σ(y)It(g)
− 1

)
KX(dx)ds

)

= exp

(∫ t

0+

∫
R
H(x, R̂s−, It(g))KX(dx)ds

)
,

where

H(x, R̂s−, I) = exp(iu[σ(y)I]−1/2eR̂s−x)− iueR̂s−x√
σ(y)I

− 1.

Combining the above computations, we get

E [exp (iuVt)] =

E

(
exp

(
iu
y(eR̂t − 1)√

σ(y)It
− u2σ2

X

2σ(y)

Jt
It

+

∫ t

0+

∫
R
H(x, R̂s−, It)KX(dx)ds

))
.

Let

h(t) =

∫ t

0+

∫
R
H(x, R̂s−, It)KX(dx)ds, t ≥ 0.

By an easy computation, we see that, for all α ∈ R,

0 ≤ ‖eiα − iα− 1‖ ≤ 2|α|.

(here ‖z‖ represents the norm of some complex number z ∈ C) and so

‖h(t)‖ ≤
∫ t

0+

∫
R
‖H(x, R̂s−, It)‖KX(dx)ds ≤ 2u√

σ(y)

(∫
R
|x|KX(dx)

)√
It.

But, limt→0+

√
It = 0 (P − a.s.) and so, by (4.7), h(t) → 0 (P − a.s.), as

t→ 0+.

Then, an application of de l’Hospital’s rule yields

lim
t→0+

Jt
It

= 1 and lim
t→0+

t

It
= 1 (P− a.s.).
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Moreover, from Taylor’s approximation and since R̂t → 0 (P − a.s.), as
t→ 0+, we have

eR̂t − 1√
t

=
R̂t√
t

(
1 + o(R̂t)

)
.

So we obtain, from Slutsky’s lemma and the fact that W
(2)
t /
√
t
d
= N (0, 1),

for all t ≥ 0, that

eR̂t − 1√
t

d→ σRN (0, 1),

as t→ 0+. Another application of Slutsky’s lemma yields(
h(t),

Jt
It
,
t

It
,
eRt − 1√

t

)
d→ (0, 1, 1, σRZ),

as t→ 0+, with Z
d
= N (0, 1), and thus

lim
t→0+

E [exp (iuVt)] = exp

(
− u

2σ2
X

2σ(y)

)
E

[
exp

(
iu

yσR√
σ(y)

Z

)]

= exp

(
−u

2

2

)
.

The theorem shows conditionally on the knowledge of It, we can obtain an
approximation for Yt for small t. At least in the case when R̂t = dRt+σRW

(2)
t ,

for all t ≥ 0, an approximation of It for small t is known. Indeed, rescaling
the variance of the Brownian motion from 1 to σ2

R in the proof of Theorem
2.2. in [Dufresne, 2004], we obtain, as t→ 0+,

ln(It)− ln(t)

σR
√
t/3

d→ N (0, 1).

Thus, we can obtain an approximating distribution for Yt when t is small,
as a normal-log-normal mean-variance mixture with common mixing random
variable. We refer to [Barndorff-Nielsen et al., 1982] for more details about
such distributions.
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Small-time Approximating Distribution. Under the assumptions of The-
orem 4.3.1, we suggest to use a normal-log-normal mixture model defined by
the following density

fNLN(u, t) =

∫ ∞
0

1√
2πσ(y)v

exp

(
−(u− y − δXv)2

2σ(y)v

)
gLN(v, t)dv, (4.11)

where σ(y) = σ2
X + σ2

Ry
2 and

gLN(v, t) =
1

σRv

√
3

2πt
exp

(
−3(ln(v)− ln(t))2

2σ2
Rt

)
to approximate the law of Yt when t is small.

As an example, we consider the Cramér-Lundberg model with investment in
a Black-Scholes market.

Example 4.3.2 (Cramér-Lundberg-Black-Scholes). Let X = (Xt)t≥0 be de-
fined as

Xt = pXt−
Nt∑
i=1

Zi, t ≥ 0,

where N = (Nt)t≥0 is a compound Poisson process with rate λX and (Zi)i∈N∗
is an independent sequence of non-negative i.i.d. random variables with
E(|Z1|) <∞. The investment process is given by Rt = aRt+ σRW

(2)
t , for all

t ≥ 0, with σR > 0, as required in the assumptions of Theorem 4.3.1.

Let us prove that Assumption (4.7) is satisfied. It is well known thatKX(dx) =
λXFZ(dx), where FZ is the distribution function of −Z1 (see e.g. Proposition
3.5 p.75 in [Cont and Tankov, 2004]). Thus, we have∫

R
|x|KX(dx) = λXE(|Z1|) <∞.

Thus, the assumptions of Theorem 4.3.1 are satisfied. Moreover, by condi-
tioning on N it is easy to check that δX = E(X1) = pX − λXE(Z1) and we
have σ(y) = σ2

Ry
2, which yield the parameters of the approximating distri-

bution.
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4.4 Large-time Approximation

In this section, we briefly recall some known results on the large-time be-
haviour of Yt and obtain an log-normal approximation for the negative (Yt)

−

and positive (Yt)
+ parts of Yt when t is large, in the small-volatility case.

Define the following quantities

Zt =

∫ t

0+

eR̂s−dXs and Z̃t =

∫ t

0+

e−R̂s−dXs.

Define also ΠX(x) = KX((−∞,−x]) + KX([x,∞)). The following lemma
follows readily form the known literature.

Lemma 4.4.1. Assume that

E(|R̂1|) <∞ and

∫ ∞
1

ln(x)|ΠX(dx)| <∞.

1. (Large volatility case) If E(R̂1) < 0, then (Zt)t≥0 converges to finite

random variables Z∞ (P− a.s.) and Yt
d→ Z∞, as t→∞.

2. (Small volatility case) If E(R̂1) > 0, then (Z̃t)t≥0 converges to a finite
random variables Z̃∞ (P− a.s.).

Proof. The first case is proven by applying Theorem 2 in [Erickson and
Maller, 2005] to the Lévy process (−R̂t)t≥0 and using Theorem 3.1 in [Car-
mona et al., 2001]. For the second case, we apply Theorem 2 in [Erickson
and Maller, 2005] to the Lévy process (R̂t)t≥0.

Remark 4.4.2. The terminology of large and small volatility comes from
the fact that if Rt = aRt + σRW

(2)
t , we have R̂t = (aR − σ2

R/2)t + σRW
(2)
t ,

t ≥ 0, by Proposition 1.2.12 and so E(R̂1) < 0 is equivalent to aR < σ2
R/2

and E(R̂1) > 0 to aR > σ2
R/2.

The lemma shows that, in the large volatility case, the known results about
the distribution of Z∞ immediately give a way to approximate the distribu-
tion of Yt when t is large. We refer to [Gjessing and Paulsen, 1997] where a
list of the laws of Z∞ is given for various choices of X and R̂. We also men-
tion [Paulsen and Hove, 1999] where a Markov chain Monte Carlo method is
proposed to simulate Z∞.
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However, the question of how to approximate Yt for large t in the small
volatility case seems to be open and thus the goal of this section is to obtain
an approximation for that case. Part of our proof will be based on the fol-
lowing specialization of a result in [Feigin, 1985] which gives a central limit
theorem for martingales.

Lemma 4.4.3 (Theorem 2 in [Feigin, 1985]). Let M = (Mt)t≥0 be a locally
square-integrable martingale. Assume that

1. limt→∞E(M2
t ) =∞,

2.

lim
t→∞

E(sup0≤s≤t |∆Ms|)√
E(M2

t )
= 0,

3. and, as t→∞,
[M ]t

E(M2
t )

P→ 1.

Then, as t→∞,
Mt√

E(M2
t )

d→ N (0, 1).

The idea for the proof of the main result below is inspired by the proof of
Theorem 3.3 in [Dufresne, 2004].

Theorem 4.4.4. Assume that R̂ is a non-deterministic Lévy process with
bounded jumps. Assume that E(R̂1) > 0 and that∫ ∞

1

ln(x)|ΠX(dx)| <∞.

Additionally, assume that P((Yt)
+ > 0) > 0, P((Yt)

− > 0) > 0 and that

P(Z̃∞ + y = 0) = 0 and P(Z̃t + y = 0) = 0, ∀t ≥ 0. (4.12)

We have

ln ((Yt)
+)− dRt√
kRt

d→ N (0, 1) and
ln ((Yt)

−)− dRt√
kRt

d→ N (0, 1),
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where dR = E(R̂1) = aR − σ2
R/2 and

kR = Var(R̂1) = σ2
R +

∫
R
x2KR̂(dx) = σ2

R +

∫ ∞
−1

| ln(1 + x)|2KR(dx).

Proof. Let b > 0 be a bound on the jumps of R̂. By Proposition 1.2.12,
the characteristics of R̂ (for the characteristic function h(x) = 1{|x|≤b}), are
(dR, σ

2
R, KR̂) and the Lévy-Itô decomposition is

R̂t = dRt+ σRW
(2)
t +

∫ t

0+

∫
{|x|≤b}

x(µR̂(ds, dx)−KR̂(dx)ds).

Thus,
R̂t − dRt√

kRt
=

Mt√
kRt

,

where M = (Mt)t≥0 is given by

Mt = σRW
(2)
t +

∫ t

0+

∫
R
x(µR̂(ds, dx)−KR̂(dx)ds), t ≥ 0.

Here, we replaced the set {|x| ≤ b} in the integral by R since the jumps are
bounded by b.

We will start by proving that, as t→∞,

Mt√
kRt

d→ N (0, 1).

We separate into two cases (i)
∫
R x

2KR̂(dx) = 0 and (ii)
∫
R x

2KR̂(dx) > 0.

First, for case (i), note that the assumption implies

E

(∑
0<s≤t

(∆R̂s)
2

)
= E

(∫ t

0+

∫
R
x2KR̂(dx)ds

)
= 0,

and so ∆R̂t = 0 (P− a.s.), for all t ≥ 0. Thus,

R̂t − dRt√
kRt

=
σRW

(2)
t

σR
√
t

d→ N (0, 1).
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For case (ii), we will use Lemma 4.4.3. Using the independence of the terms in
the Lévy-Itô decomposition and Theorem 1 p.176 in [Liptser and Shiryayev,
1989], we obtain

E(M2
t ) = σ2

Rt+ E

(∫ t

0+

∫
R
x2KR̂(dx)ds

)
= kRt.

Thus, M is locally square integrable and the first assumption of Lemma 4.4.3
is satisfied.

The second assumption is also satisfied since, as t→∞,

E(sup0≤s≤t |∆Ms|)√
E(M2

t )
=

E(sup0≤s≤t |∆R̂s|)√
kRt

≤ b√
kRt
→ 0.

For the third assumption, note that

[M ]t = 〈M c〉t +
∑

0<s≤t

(∆Mt)
2 = σ2

Rt+

∫ t

0+

∫
R
x2µR̂(ds, dx), t ≥ 0.

But,

[M ]t
E(M2

t )
=
σ2
R

kR
+

1

kR

∫ t
0+

∫
R x

2µR̂(ds, dx)∫ t
0+

∫
R x

2KR̂(dx)ds

(∫
R
x2KR̂(dx)

)
.

Now, Theorem 12 p.145 in [Liptser and Shiryayev, 1989] tells us that for a

locally integrable increasing process A, we have At/Ãt
P→ 1, as t→∞, where

Ã is the compensator of A when P(Ã∞ =∞) = 1 and

E

(
sup
t≥0

∆At

)
<∞. (4.13)

Thus, letting

At =

∫ t

0+

∫
R
x2µR̂(ds, dx) and Ãt =

∫ t

0+

∫
R
x2KR̂(dx)ds = t

∫
R
x2KR̂(dx)

we see that indeedA is locally integrable increasing and that P(Ã∞ =∞) = 1
when

∫
R x

2KR̂(dx) > 0. For (4.13), note that ∆At = (∆R̂t)
2 ≤ b2, for all

t ≥ 0, and thus

E

(
sup
t≥0

∆At

)
≤ b2 <∞.
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From Lemma 4.4.3, we then obtain

R̂t − dRt√
kRt

d→ N (0, 1), (4.14)

as t→∞.

Now, note that from P(Z̃t + y = 0) = 0, we obtain P(Z̃t + y 6= 0) = 1 and
so, for all t ≥ 0,

(Yt)
+ = (Yt)

+1{Z̃t+y 6=0} = eR̂t(y + Z̃t)
+1{Z̃t+y 6=0} (P− a.s.)

or equivalently

ln
(
(Yt)

+
)

= R̂t + ln
(

(y + Z̃t)
+1{Z̃t+y 6=0}

)
(P− a.s.)

or

ln ((Yt)
+)− dRt√
kRt

=
R̂t − dRt√

kRt
+

ln
(

(y + Z̃t)
+1{Z̃t+y 6=0}

)
√
kRt

(P− a.s.).

But, Lemma 4.4.1 implies that (Z̃t)t≥0 converges to a finite random variable
(P− a.s.), and so, as t→∞,

ln
(

(y + Z̃t)
+1{Z̃t+y 6=0}

)
→ ln

(
(y + Z̃∞)+1{Z̃∞+y 6=0}

)
(P− a.s.).

From Assumption (4.12), we then obtain P(Z̃∞ + y 6= 0) = 1 and so the
limiting random variable is finite (P − a.s.). Thus, (4.14) and Slutsky’s
lemma yield the final result. The proof for (Yt)

− is obtained by replacing
(Yt)

+ by (Yt)
− in the above arguments.

Remark 4.4.5. An adaptation of the proof of Theorem 2.2.3 shows that we
have P(Z̃t + y = 0) = 0, for all t ≥ 0, when σX > 0 or KX(R) = ∞. The
condition P(Z̃∞+y = 0) = 0 seems harder to verify. Some results concerning
the absolute continuity of Z̃∞ are given in [Bertoin et al., 2008].

Thus, we can suggest large-time approximating distributions.

125



ON THE LAW AT FIXED TIME OF GOU PROCESSES

Large-time Approximating Distribution. When E(R̂1) < 0 (large volatil-
ity) and under the assumptions of Lemma 4.4.1, we suggest to use the dis-
tribution of

Z∞ =

∫ ∞
0+

eR̂s−dXs

as an approximating distribution for Yt when t is large.

When E(R̂1) > 0 (small volatility) and under the additional assumptions of
Theorem 4.3.1, we suggest to use the log-normal distribution defined by the
following density

gLN(v) =
1

v
√

2πkRt
exp

(
−(ln(v)− dRt)2

2kRt

)
where dR = E(R̂1) = aR − σ2

R/2 and

kR = Var(R̂1) = σ2
R +

∫ ∞
−1

| ln(1 + x)|2KR(dx),

as an approximating distribution for the laws of (Yt)
+ and (Yt)

− when t is
large.
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Birkhäuser Boston, Boston, MA.

[Cherny, 2006] Cherny, A. (2006). Some particular problems of martingale
theory. In From stochastic calculus to mathematical finance, pages 109–
124. Springer, Berlin.

[Cont and Tankov, 2004] Cont, R. and Tankov, P. (2004). Financial mod-
elling with jump processes. Chapman & Hall/CRC Financial Mathematics
Series. Chapman & Hall/CRC, Boca Raton, FL.

[Cox et al., 1979] Cox, J. C., Ross, S. A., and Rubinstein, M. (1979). Option
pricing: A simplified approach. Journal of Financial Economics, 7(3):229
– 263.

[Cumberland and Sykes, 1982] Cumberland, W. G. and Sykes, Z. M. (1982).
Weak convergence of an autoregressive process used in modeling popula-
tion growth. J. Appl. Probab., 19(2):450–455.

[de Haan and Karandikar, 1989] de Haan, L. and Karandikar, R. L. (1989).
Embedding a stochastic difference equation into a continuous-time process.
Stochastic Process. Appl., 32(2):225–235.

[Dellacherie and Meyer, 1975] Dellacherie, C. and Meyer, P. (1975). Proba-
bilités et potentiel. Hermann, Paris. Chapitres I à IV, Édition entièrement
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Titre : Les Processus d’Ornstein-Uhlenbeck Généralisés en Théorie de la Ruine 
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théorèmes limites, problème de la ruine avec investissement, lois à temps fixes. 

Résumé :  Cette thèse contribue à l’étude des 
processus d’Ornstein-Uhlenbeck généralisés (GOU) 
et de leurs applications en théorie de la ruine. Les 
processus GOU, qui sont les solutions de certaines 
équations différentielles stochastiques linéaires, ont 
été introduits en théorie de la ruine par Paulsen en 
1993 en tant que modèles pour le capital d’une 
assurance soumise au risque de marché. En général, 
ces processus sont choisis comme modèles de 
manière a priori. La première et principale contribution 
de cette thèse est de montrer que les processus GOU 
apparaissent de manière naturelle comme limites 
faibles de processus autorégressifs à coefficients 
aléatoires qui sont très utilisés en probabilité 
appliquée. À partir de ce résultat, la convergence des 
temps de ruine, des probabilités de ruine et des 
moments est aussi démontrée. 

Le reste de la thèse traite de certaines propriétés 
des processus GOU. En particulier, le problème de 
la ruine est traité et de nouvelles bornes sur les 
probabilités de ruine sont obtenues. Ces résultats 
généralisent aussi des résultats connus au cas où le 
risque de marché est modélisé par une 
semimartingale. 
 
La dernière partie de la thèse s’éloigne de la théorie 
de la ruine pour passer à l’étude de la loi du 
processus à temps fixe. En particulier, une équation 
intégro-différentielle partielle pour la densité est 
obtenue, ainsi que des approximations pour la loi en 
temps courts et longs. Cet éloignement de  la 
probabilité de ruine s’explique par le fait que la 
plupart des mesures de risques utilisées dans la 
pratique sont basées sur ces lois. 

 

Title : Generalized Ornstein-Uhlenbeck Processes in Ruin Theory 

Keywords : semimartingales, generalized Ornstein-Uhlenbeck processes, autoregressive processes, limit 
theorems, ruin problem with investment, laws at fixed times. 

Abstract :  This thesis is concerned with the study of 
Generalized Ornstein-Uhlenbeck (GOU) processes 
and their application in ruin theory. The GOU 
processes, which are the solutions of certain linear 
stochastic differential equations, have been 
introduced in ruin theory by Paulsen in 1993 as 
models for the surplus capital of insurance companies 
facing both insurance and market risks. In general, 
these processes were chosen as suitable models on 
an a priori basis.  

The first and main contribution of this thesis is to show 
that GOU processes appear naturally as weak limits 
of random coefficient autoregressive processes which 
are used extensively in applied probability. Using this 
result, the convergence in distribution of the ruin 
times, the convergence of the ultimate ruin probability 
and the moments are also shown. 

 

The rest of the thesis deals with the study of certain 
properties of GOU processes. In particular, the ruin 
problem for the GOU process is studied and new 
bounds on the ruin probabilities are obtained. These 
results also generalize some known upper bounds, 
asymptotic results and conditions for certain ruin to 
the case when the market risk is modelled by a 
semimartingale. 

The final section of the thesis moves away from 
classical ruin theory and lays some first directions for 
the study of the law of GOU processes at fixed 
times. In particular, a partial integro-differential 
equation for the density, large and small-time 
asymptotics are obtained for these laws. This shift 
away from the ruin probability is explained by the fact 
that most risk measures used in practice such as 
Value-at-Risk are based on these laws instead. 
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